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Abstract 

 Deep learning is being successfully applied across multiple domains, yet these models 
learn in a most artificial way: they require large quantities of labelled data to grasp even simple 
concepts. Thus, the main bottleneck often is access to supervised data. We review a trend on a 
potential solution to this challenge: synthetic data. Synthetic data is becoming accessible due to 
progress in rendering pipelines, generative adversarial models, and fusion models. Moreover, 
advancement in domain adaptation techniques help close the statistical gap between synthetic 
and real data. Paradoxically, this artificial solution is also likely to enable more natural learning 
as we see in biological systems, including continual, multimodal, and embodied learning. 
Complementary, simulators and deep neural networks will also play a critical role in providing 
insight on the cognitive and neural functioning of biological systems. We review strengths, 
opportunities, and novel challenges with synthetic data.  
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The Bottleneck is Labeled Data 

 The last decade has experienced a revolution in interest and investment in deep learning 
that has enabled successful applications in visual perception, natural language processing, and 
robotic control, among others [1]. Deep learning’s success benefited from converging trends in 
the development of algorithms to train these models (e.g., backpropagation), the availability of 
“big data” (e.g., social media), and advances in computational power (e.g., powerful graphical 
processing units or GPUs). However, despite these initial successes, it is becoming apparent that 
the current generation of deep neural networks (DNNs) has important practical and theoretical 
limitations. DNNs are sample-inefficient in that they require large amounts of annotated data 
(e.g., images of vehicles with bounding boxes) to optimize all its parameters (typically in the 
order of millions). Therefore, rather than algorithm or computational capability, the availability 
of annotated data is often the main bottleneck in the development of deep learning models. 
Synthetic data and simulators have emerged as a promising solution to this challenge [2]. 
Synthetic data are, comparatively, easier to generate, inexhaustible, pre-annotated, and less 
expensive. Synthetic data also have the potential to avoid ethical (e.g., privacy concerns) and 
practical issues (e.g., security concerns). Synthetic data further introduce unique opportunities in 
that they enable training data that may be impractical or impossible to collect in the real world. 
 More fundamentally, DNNs still lack important capabilities seen in biological systems. 
Humans are able to learn rich representations of the world, including about its (hierarchical) 
compositional and physical nature [3, 4]. Humans are more efficient learners, often being able to 
grasp novel concepts from a small sample of examples [5] and in mostly unsupervised fashion 
[6]. Moreover, human learning is sophisticated often relying on rich interactive experiences, in 
contrast to static datasets that capture “moments in time” (e.g., ImageNet). Synthetic data and 
simulators are a new catalyst for these richer representations of the world and more sophisticated 
forms of learning, including multimodal learning [7] (e.g., fusing visual and audio 
information), continual learning [8] (e.g., understanding gradually more complex tasks in 
sequence), and embodied learning [9] (e.g., interactive exploratory play to understand object 
affordances). Complementary, simulators can be used to gather unique insight on biological 
systems [10, 11]. By comparing different artificial neural models with respect to how well they 
simulate cognitive functionality and predict brain activity it becomes possible to test, validate, 
and extend existent theory [12]. Insofar as simulated data enables training and testing DNNs, 
thus, it plays an instrumental role in the study of biological systems. Simulated data further 
present novel opportunities for scientific exploration. By analyzing the properties of DNNs, it is 
possible to synthesize optimized stimuli to activate specific neural populations with relevant 
application to the study of brain function [13]. Simulated environments, perhaps even fully 
immersive (e.g., virtual reality), can further provide a unique opportunity for direct comparison 
of behavior and neural activation in DNNs vs. humans vs. nonhuman primates in embodied 
interactive tasks. Synthetic data, therefore, can further the development of artificial neural 
networks that model critical function we see in biological systems, simultaneously contributing 
to our understanding of these systems and offering solutions with broad practical relevance.  
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 The article starts by overviewing successful methodologies used to synthesize data for 
deep learning models, emphasizing the integration of the synthesis and machine learning 
pipelines. Next, we focus on a central challenge to using simulated data: aligning synthetic data 
to real data at the pixel and feature level. We then articulate how synthetic data and simulators 
can enable deep learning solutions that can learn richer representations of the world and learn in 
sophisticated ways, while simultaneously providing insight on the biological systems they draw 
inspiration from. 

 

Synthesizing Data and Integrating with the Deep Learning Pipeline 

 Progress in computer graphics tools, such as game engines (e.g., Unity and Unreal), and 
the increasing availability of three-dimensional (3D) assets, is making it easier to develop 
simulators for custom domains (Figure 1A). This approach has been used to synthesize training 
data for a variety of tasks, including object detection [15-17], object tracking [18, 19], viewpoint 
estimation [20], semantic segmentation [21-23], robot manipulation and control [24-28], pose 
estimation [29-31], gaze estimation [32], and activity recognition [33, 34] (for a detailed review 
of simulators and synthetic datasets see: [35]). Synthetic data, across these diverse domains, 
often led to improvement in deep neural network performance when tested in real domains, 
especially when combined with real data. In this approach, synthesis relies on a computer 
graphics rendering pipeline, which takes as input 3D information about the scene (e.g., points 
in three-dimensional space specifying a vehicle), information about the materials and lighting 
properties (e.g., vehicle color and light sources), rendering parameters (e.g., rasterization or 
raytracing algorithm), and produces a 3D visualization of the scene (Figure 1D). Since the 
pipeline has information about the scene details it can automatically generate error-free ground-
truth (e.g., bounding boxes for objects of interest, depth information, and scene segmentation 
masks). By increasing the amount of 3D information (e.g., the number of 3D vertices specifying 
the objects of interest) and the sophistication of the algorithms used to render the scene, it is 
possible to increase the visual realism of the output, i.e., the visual fidelity of the scene when 
compared to the real world. Similarly, it is possible to increase the motion realism of the output 
by using 3D motion capture techniques (e.g., for human activity recognition) and sophisticated 
physics engines (e.g., for robot manipulation). In general, increasing the realism of the 
synthesized output tends to improve deep learning performance [20, 36-39], though in some 
cases it is less important [17, 40-43]. Achieving high levels of realism (e.g., as seen in movies), 
however, can be costly. One alternative approach is to generate synthetic data and then improve 
realism by using domain adaptation techniques, as discussed in the next section. Another 
alternative is to use generative adversarial models. 

 Generative Adversarial Networks (GANs) are a promising technique to synthesize 
novel images that match the statistical properties of the training data (Figure 1B) [44] (for a 
recent survey see: [45]) – for instance, GANs can generate faces of people that don’t exist from a 
training set of existent human faces [46]. GANs consist of two models trained to optimize 
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opposite objectives (i.e., adversarial): a generator and a discriminator (Figure 1E). The generator 
learns a lower-dimension latent representation of the training data domain and is able to generate 
new samples by receiving as input a random vector in the latent space. The discriminator, in turn, 
learns to distinguish original images from synthesized images. By training the generator and 
discriminator simultaneously, the generator learns to synthesize better samples, so as to fool the 
discriminator. GANs are becoming increasingly popular due to the high visual quality of 
synthesized imagery [46-49], in particular when compared to other generative approaches such 
as variational autoencoders [45]. However, in its original formulation, it is hard to control the 
output produced by GANs, though this is still an area of active research. A promising trend 
consists of conditioning GANs on additional input that characterizes the samples being fed in 
training (e.g., labels specifying the gender of human faces) [50]. This idea has been extended to 
allow sophisticated control in the generation of images [46, 51] (e.g., pose and hairstyle of 
human faces). One challenge with using GANs is that the synthesized imagery is not produced 
with the associated ground truth data, as for graphics pipelines. However, good progress is being 
made extending GANs to produce imagery that already comes with detailed annotation, such as 
images of scenes with automatically generated scene segmentation ground truth [52]. Another 
recent trend has been to train big generative models (e.g., with billions of parameters and 
terabytes of data) [53], including language [54] and multimodal models [55], that can 
subsequently be reused to synthesize novel content and be integrated with other pipelines to 
solve domain-specific tasks. 

 A third approach for synthesizing data consists of creating imagery by fusing from 
multiple data sources (Figure 1C). Often this is accomplished by superimposing virtual objects 
[56-58] or people [59, 60] on real backgrounds, while ensuring that the virtual entities fit 
consistently with the background (e.g., by aligning surfaces and lighting). Extending this 
approach to fuse real entities on real backgrounds brings the extra challenge of cropping the real 
entities from the original backgrounds. Whereas this could be done manually, GAN-based 
methods have shown promise in automatically finding the cropping region (i.e., the semantic 
mask) with minimal annotation (e.g., bounding boxes) [61, 62]. By combining segmentation with 
domain adaptation techniques, it is further possible to replace in place one type of entity for 
another (e.g., a bicycle for a motorcycle) while preserving the rest of the image [63, 64]. 

Finally, we see much promise in integrating the synthesis and learning pipelines. There is 
a long history of integrating simulators with the learning process in deep reinforcement learning, 
where it is often impractical or impossible to train in the real world [65, 66]. Reinforcement 
learning agents learn an action policy (e.g., grasping objects or playing a game) by practicing 
(millions of times) in simulators [67, 68]. The key distinction is the integration of the learning 
process with the simulator, rather than relying on a static dataset of simulated data for training. 
This powerful idea can be extended to support more sophisticated forms of learning, such as 
continuous (lifelong) learning and embodied (interactive) learning, which we further discuss 
below. The concept can be applied to supervised learning by using error signals, such as a task 
classification loss, to optimize data synthesis generation [69] (Figure 1F). When using graphics 
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rendering pipelines, one challenge is to propagate the error signal through the non-differentiable 
functions implemented in traditional pipelines. An emerging field, called neural rendering, 
aims to build differentiable rendering pipelines and is showing fast progress in generating 
controllable visually realistic rendering [70, 71] (for a review see [72]). Integration of deep 
learning and differentiable rendering pipelines, thus, holds the promise to support the generation 
of customized curricula for more sample-efficient learning. 
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Figure 1. Data synthesis approaches and integration with the machine learning pipeline. 
Data can be synthesized using computer graphics rendering pipelines (A), generative adversarial 
models (B), and fusion models (C). The traditional computer graphics pipeline (D) receives as 
input the 3D information about the scene and renders, through stages, a visualization of the scene 
in screen space. Generative adversarial networks (E) rely on a generator and discriminator 
network learning simultaneously on competing objectives, which leads the former to improve the 
quality of the synthesized imagery. Integrating the synthesis and deep learning pipelines (F) 
enables more sophisticated learning, such as embodied continuous learning. 

Closing the Gap Between Synthetic and Real Data 

Despite their success in achieving state-of-the-art performance in several visual 
recognition tasks, neural networks suffer from domain shift i.e., the performance of neural 
networks drops significantly when the test distribution is different from the training distribution, 
such as when training on synthetic data and testing on real data. To close this gap, several 
techniques have been developed to enhance the value of synthetic data. Domain randomization 
consists of varying the parameters used to generate the synthetic data, so that the dataset broadly 
captures the distribution in the target domain [16, 28]. By training on such a diverse dataset, the 
hope is that the model will be more robust to variation in the target domain and generalize better 
to novel samples. In some cases, this idea was even pushed to create non-photorealistic versions 
of the data (e.g., vehicles with random textures) to encourage the model to learn better 
representations of the target concepts (e.g., features that capture the shape, rather than texture, of 
vehicles) [17]. Mixing real and synthetic data (hybrid models) has also often led, in practice, to 
a boost in performance, when compared to training only on one type [34]. The idea is that 
mixing data allows different data types to strengthen training where others may have weaknesses 
(e.g., synthetic data tends to be more diverse, but real data may capture low level details better).  

An increasingly prominent technique is domain adaptation, which consists of aligning 
the synthetic data pixel and feature distribution to the real data (Figure 2). Pixel-level adaptation 
consists of transferring the style, or visual appearance properties, of the target to the source 
domain. Approaches based on adversarial generative models are showing increasing success in 
creating realistic versions of the synthetic data, even without the need for any supervision (i.e., 
no labels are necessary) [73-77]. Recent promising techniques preserve semantic consistency 
when translating from source to target through cycle consistency (i.e., the translation needs to 
learn to go from source to target and back) [75], patch consistency (i.e., image patches in source 
and target domain should reflect the same content) [76], and leveraging intermediate 
representations from an integrated computer graphics pipeline (e.g., depth and color masks) [77].  

Whereas in pixel alignment the goal is to adjust the visual style of the source domain, in 
feature-level adaptation the distributional distance between source and target feature spaces is 
minimized, while simultaneously training a task network (e.g., segmentation model). Visual 
realism, in this case, is not the main concern, as the focus is on optimization for task 
performance. This problem is often presented as unsupervised domain adaptation, with labeled 
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synthetic source data being available, but without labels for the target real data. Several feature 
alignment approaches have been explored, including through minimization of some distance 
between source and target distributions [78, 79], weight sharing and discriminators to encourage 
the network to learn domain invariant representations [80, 81], projecting the distance 
minimization problem to pixel-space to increase the network capacity and preserve semantic 
content [82], adapting while accounting for cross-domain label imbalances [83], and learning 
disentangled internal representations that abstract away irrelevant transformations in the target 
domain [84]. Often, best results have been achieved by combining pixel and feature alignment 
approaches [85]. 

 

 

Figure 2. Domain adaptation at the pixel- and feature-level seeks to close the gap due to 
visual style and feature distribution shift when moving from synthetic to real data. In 
unsupervised domain adaptation, the source domain (synthetic data) is labeled (top row), 
whereas the target domain (real data) is unlabeled (bottom row). The goal is to close the domain 
gap by aligning the pixel style of the source to the target domain (i.e., close the visual shift) and 
learn an embedded representation that is invariant to the domains, while optimizing for a certain 
downstream task (i.e., close the feature shift). 

 

Enabling the Next Generation of Deep Learning 

Drawing from cognitive psychology and neuroscience [14], there are several desirable 
functional and architectural requirements for DNNs. Approaching human-level intelligence 
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likely requires grasping key concepts related to the physical world and its composition [3, 14, 
91], as well as the ability to learn continually, interactively, and multimodally [9, 92]. Here we 
emphasize the central role synthetic data and simulators play in enabling this next generation of 
deep learning and, complementary, in providing insight on biological systems (Figure 3).  
 

 
Figure 3. Simulators and synthetic data enable key capability for the next generation of 
machine learning models. Simulated data and deep neural networks are important tools in the 
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study of cognitive and neural function in biological systems, enabling exploration of novel 
(artificial) models for biological function, but also supporting the creation of optimized stimuli to 
test neural systems (A). Simulated data can be used to learn (known and unknown) physics and 
make physically realistic predictions (B). Simulated data can be used to teach latent disentangled 
representations that capture the structure and shape of objects (C). Simulated audio, visual, and 
haptic data provide redundancy and complementary that lead to more generalizable internal 
representations (D). Simulators are ideal for generating a sequence of tasks, which are neither too 
narrow nor disjoint, to support continual learning without forgetting prior tasks (E). Open-ended 
interactive exploration in simulators can enable the kind of embodied learning seen in biological 
systems (F). 
 

Deep Learning for Scientific Exploration 

  There is a long history of drawing from artificial intelligence to further theory in 
cognitive psychology and neuroscience [10, 14]. However, DNNs are gaining increasing 
attention as models of cognitive and neural function due to their ability to learn complex 
behavior from low-level sensory input, such as image pixels [11]. Some recent successes include 
predicting behavior and neural activity in perception [86, 87] and memory [88] systems. The 
benchmarking of different DNNs with respect to how well they predict brain activity allows 
scientists to test current theory and formulate novel hypotheses about cognitive and neural 
functioning in biological systems [12]. Given that simulators are able to systematically re-create 
environmental conditions to test different learning processes and dynamics in DNNs, they are a 
key enabling technology to the study of biological systems (Figure 3A). Progress in techniques 
to “open up” DNNs and gather insight on the representations embedded in the hidden layers [89] 
also introduces the opportunity of retrieving novel post hoc explanations for the functions 
modeled in DNNs. Here too, synthetic data can be useful to generate stimuli that targets portions 
of the neural networks to study its function and formulate explanations. For instance, synthetic 
data has been used to generate optimal stimuli to activate neural subpopulations in primate 
cortical regions [13]. Synthetic data and simulators also support sophisticated comparison of 
artificial and biological systems. The use of synthetic materials to study biological systems has a 
long tradition in cognitive psychology, neuroscience, and artificial intelligence [3, 90]. However, 
the increasing sophistication and realism of current approaches, as reviewed above, affords novel 
possibilities. For instance, fully immersive environments (e.g., virtual reality) could support 
direct comparison of behavior and neural activation in DNNs vs. humans vs. nonhuman primates 
in embodied interactive tasks. The following subsections review how synthetic data and 
simulators can help get insight and model key cognitive function. 

Physics 

 At a very young age, humans have a basic understanding of the physical world, such as 
notions of what constitutes an object and expectations about how they interact with the 
environment [3, 91]. This knowledge enables mental models about the composition of the world 
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and predictions about what may happen next [14]. Endowing deep learning models with this type 
of knowledge, thus, would support more sophisticated learning and inference. Recent work 
attempts to teach neural networks about physics on the fly (Figure 3B, top). One approach is to 
train the network with representative examples of the physical domain (e.g., collapsing block 
towers) and rely on standard learning algorithms to implicitly learn physical knowledge [93]. 
Another consists in developing specialized architectures that learn physical laws governing the 
domain (e.g., ball trajectories) [94]. In either case, simulators with an appropriate physics engine 
are often used to generate the training data [93, 94]. Human intuitive physics have also been 
argued to rely on a mental simulator to make predictions about the world [4]. In this paradigm, a 
physics simulator can be explicitly used to make relevant predictions and the challenge, then, is 
transformed into perceiving the environment (e.g., constructing a scene graph representation 
through inverse rendering [95]) and feeding that information to the simulator (Figure 3A, 
bottom). Finally, researchers have also begun embedding physical priors into the learning 
process (e.g., loss objectives that reflect pertinent physical constraints) to improve transfer from 
synthetic to real domains [96] and to synthesize more realistic 3D models from 2D imagery [72]. 

Compositionality 

 One way to address the complexity of modeling complex synthetic environments is 
through compositionality. Scenes in the world are decomposable into stable entities, animate 
(like people or animals) or inanimate (like vehicles or furniture), that we can generically call 
objects. Such a decomposition is useful, because objects recur in scenes in many different 
arrangements, but maintain their appearance, properties, and functionality. Similarly, objects 
themselves consist of parts that have a simpler structure and are often shared across related 
semantic categories (e.g., chairs, tables, beds, etc. all can have legs). There is a long history in 
computer vision [97] and computer graphics (e.g., scene graphs) demonstrating the utility of 
exploiting compositionality in both analysis and synthesis tasks, static and dynamic. 
Compositional representations are typically hierarchical groupings, based on many possible 
criteria, including spatial proximity, symmetry, causality, functionality, and others [98, 99], 
related to principles studied in Gestalt psychology. In synthesis settings, such hierarchies provide 
natural scaffolds for editing operations, allowing convenient manipulation respecting the 
semantics of the object or scene – and facilitating the generation of multiple variations. 
 The machine learning era has created the need for annotated compositional data. In the 
3D object domain, datasets that provide fine-grained part decompositions have begun emerging, 
where objects are mapped into manually curated hierarchies [100]. Hierarchical neural nets, as 
well as hierarchical convolutional graph networks, have been used in the synthetic generation of 
objects and scenes, incorporating joint structure and geometry synthesis [101-103]. Scenes 
naturally exhibit more compositional variability than objects, as many of their constituent entities 
are mobile or movable. In that setting probabilistic formulations make sense, supporting rule 
statistics for a generative probabilistic scene grammar to be learned from data [69] and grammar 
productions themselves to be inferred [104]. Many variations are possible and a recent survey of 
generative 3D models for objects and scenes is available [105]. As with all generative 
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approaches, defining appropriate losses for assessing the quality of the generated compositions 
remains a challenge. Generative compositional models can be conditioned on partial scans, 
images, or even language. Ideally, one looks for low-dimensional parametrizations of 
compositional variability with disentangled parameters. Composition often reflects function and 
structured models can be useful in simulators, with either real or qualitative physics. It has also 
been suggested that compositionality will be a key attribute in building machines that think more 
like people [3]. 

Multimodal Learning 

 Humans experience and learn about the world through multiple senses, including vision, 
hearing, and touch [9]. The ability of multiple sensory neural structures to participate in the same 
function [106] enables redundancy and self-supervision in learning. Redundancy pertains to the 
ability to learn to perform a task using different modalities (e.g., vision or touch to grasp an 
object). Self-supervision pertains to the ability of different sensory systems to educate each other 
about performing a task (e.g., visual-haptic feedback to reach for an object inside a transparent 
container). In deep learning systems, it is also possible to use redundant and complementary 
information from multiple data sources to learn more robust and generalizable concept 
representations [107]. This is perhaps best exemplified by models that integrate audio and visual 
information, which often co-occur in nature, and learn correspondences that enable predictions 
on visual tasks from audio information [7] and vice-versa [108]. Recently, haptic information 
was further shown to be useful for learning features that are pertinent to visual recognition tasks 
[109]. Given its relevance to building robust robotics and autonomous systems, there has also 
been considerable interest in merging RGB camera information with complementary sensors, 
such as depth, LiDAR, and infrared [110]. However, multi-modal sensor data often requires 
alignment or registration, a non-trivial task. Synthetic data generation can mostly alleviate the 
need for data alignment as data generation is under our control. This motivated the simulation of 
various sensor modalities, often by enhancing rendering pipelines with specialized physics 
engines [111, 112]. A recent promising trend is to develop open-ended simulators that support 
multimodal training (e.g., physically realistic audio-visual data), as well as explorative 
incremental learning [113] (more on this in the ‘Embodied Learning’ subsection). 

Continual Learning 

 Humans and animals are remarkably apt at adapting to a changing environment and 
learning continuously [8, 114]. Replicating this capability in deep learning models would support 
learning of a potentially infinite series of tasks (e.g., detection of a growing number of 
categories). Therefore, researchers have explored several mechanisms to support this type of 
learning, often taking inspiration from biological systems. One approach prevents older tasks 
from being forgotten by protecting the weights relevant to those tasks [115], similarly to synaptic 
plasticity mechanisms in biological brains. Another approach integrates memory systems to 
support replay and episodic memory of relevant prior information [116]. Yet another approach 
replicates modularity in the brain, often achieved through interactive expansion of the network 
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parameters while simultaneously trying to meet sparsity constraints [117]. A common challenge 
to these methods is the need to have a representative set of tasks, which is neither too narrow nor 
disjoint, to train continual learning algorithms. Due to the difficulty of collecting these training 
sets from the real world, researchers have often resorted to simulated tasks, such as the Atari 
game suite [67] and robot manipulation tasks [118], to train these algorithms. A natural extension 
is the development of simulated open-ended environments [92, 113] that would not only enable 
lifelong, but structured [119], continual learning. A practical consideration in this setting is 
designing computationally efficient data generation given the extended training timelines [120]. 

Embodied Learning 
 Exploration is essential for human learning. Babies acquire foundational knowledge 
about the compositionality and the affordances of the physical world through free play with 
objects in their environments [3, 91]. This interactive engagement leads to rich time-locked 
correlated visual, haptic, and auditory feedback that contributes to the formation of general 
internal representations of concepts. The idea that aspects of human intelligence are grounded 
and emerge from embodied interaction with the world has been associated with learning of basic 
concepts (e.g., intuitive physics [93]) but also sophisticated symbolic systems (e.g., language 
[121]). Consequently, researchers noted that, in contrast to training from static datasets that 
capture moments in time, interactive explorative learning could lead deep learning systems to 
acquire more robust and generalizable representations of objects, actions, and functions [122, 
123]. This paradigm shifts calls for datasets that, rather than capturing the world from a third-
person perspective, represent first-person experiences. Whereas datasets have started emerging to 
support embodied learning [124, 125], collecting this type of data is particularly labor intensive 
[126]. Accordingly, researchers have started developing open-ended physically realistic 
simulated environments that provide multimodal feedback [92, 113].  
 The notion of embodied learning implies, at a fundamental level, knowledge about the 
three-dimensional properties of the world. To understand, for instance, how to interact with a 
novel object it is necessary to understand its 3D affordances [122]. Whereas this information is 
readily available in simulators, there is also research in inverse rendering that tries to retrieve 
this information directly from 2D imagery [95, 127, 128]. Reconstructing 3D shapes, however, 
requires training data with multiple views of the target object or scene, which is seldom available 
in practice. In promising recent work, though, researchers attempt to automatically retrieve, or 
disentangle, implicit 3D information from the latent space in GANs [129]. Simulators, inverse 
rendering, and latent space disentanglement techniques, therefore, establish a comprehensive 
foundation to enabling embodied learning in deep learning models. 

Concluding Remarks and Future Challenges 

The next generation of deep neural networks will be able to learn rich models of the 
world in continual, multimodal, and embodied fashion, matching cognitive capability only seen 
in biological systems. Simulators and synthetic data will play a central role in this 
transformation. The current generation of deep learning models is limited by access to high 
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quality training data. This challenge will only be exacerbated due to increased scrutiny of data 
privacy and security practices. Current research shows that synthetic data can be successfully 
leveraged to train deep learning models, especially when used in conjunction with domain 
adaptation techniques that align, statistically at the pixel and feature levels, synthetic and real 
data. This trend is bound to become more pervasive as it is becoming easier to synthesize 
realistic data due to impressive advancement in computer graphics rendering pipelines, 
generative adversarial models, and fusion models. However, beyond meeting current demands 
for data, synthetic data will meet novel demands. Open-ended interactive multimodal simulation 
will shift the training paradigm from static datasets usually from a third-person perspective to 
first-person embodied experiences datasets, which are difficult to collect in the real world. 
Integration of the synthesis and learning pipelines will support continuous life-long structured 
learning more similarly to how humans learn and, thus, likely to produce richer, robust, and 
generalizable knowledge about the world. The paradox of using synthetic data to model natural 
forms of learning may thus, in practice, be no paradox at all. 

Several open issues, nevertheless, remain with respect to synthesizing data that is optimal 
for deep learning models (see Outstanding Questions). From a modeling perspective, it is 
essential to assess how similar is the learning and decision process in DNNs when compared to 
biological systems. Performance on existent datasets may provide insight on the model’s 
predictive ability, but the explanation for the prediction can be obscure. Progress in techniques to 
dissect and visualize the internal representations of DNNs [89] will likely play an essential role 
in retrieving these explanations. Furthermore, synthetic data can be systematically created (e.g., 
with increasing levels of complexity) precisely to study how internal representations are built. 
Synthetic data is also ideal for exploration [10], not only allowing creation of stimuli to study 
brain behavior [86, 87], but also to create stimuli (e.g., virtual environments) for sophisticated 
interactive comparison of behavioral outcome and neural activation of artificial vs. biological 
systems. From a practical perspective, prior to deploying DNNs in the real world, one needs to 
provide some assurances that systems built using synthetic data will perform close to systems 
that were built using data collected by real sensors. Such assurances will require theoretically 
sound metrics for synthetic data quality that go beyond subjective impressions (e.g., “looks 
good”) and performance on benchmark datasets. Considerable investment has been made 
developing simulators for mainstream domains (e.g., driving), yet another practical difficulty is 
that there are still no sophisticated simulators for other, perhaps more complex, domains (e.g., 
social interaction). Nevertheless, good progress is being made in furthering these types of 
simulations (e.g., cognitive models of emotion and social expression [130]), as well as using 
simulated environments to facilitate the collection of data for these domains (e.g., virtual 
environments to study social interaction [90]). A more fundamental challenge, however, may be 
whether people will trust and adopt systems trained exclusively, or mostly, with synthetic data – 
e.g., would people trust a self-driving car that was trained on simulators? It is, therefore, 
important to understand the differences, not only in terms of performance, but in terms of 
representation in feature space between models trained with synthetic vs. real data. Here too, 
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visualization and dissection techniques [89] will likely play a crucial role in explaining how 
synthetic networks work and help build trust. Nevertheless, despite these challenges, synthetic 
data introduces a unique opportunity that is worth exploring to enable a new generation of deep 
learning models that are not limited by available data, but by our imagination alone. 

Glossary 

Computer graphics rendering pipeline: a sequence of algorithms that produces a three-
dimensional visualization in screen space from parameters that describe the scene, such as object 
3D and material information, lighting and camera properties, and rendering parameters. 

Continual learning: the process of learning a sequence of tasks without forgetting about how to 
perform earlier tasks in the sequence. 

Domain randomization: techniques to create a dataset that is diverse and broadly representative 
of a target domain, for the purpose of increasing the robustness and generalizability of a deep 
learning model. 

Domain adaptation: techniques that seek to align the statistical properties across domains (e.g., 
synthetic and real), so that deep learning models training in one domain can be deployed in 
another. 

Domain shift: change in the domain distribution that occurs when a deep learning model is 
trained with data from one domain (e.g., synthetic) and tested on another (e.g., real). 

Embodied learning: the process of learning from multimodal information obtained through 
interactive exploration of the environment. 

Hybrid models: deep learning models trained with a mix of real and synthetic data.  

Inverse rendering: The process of automatically retrieving, from 2D imagery, scene attributes 
such as 3D object information, lighting properties, and camera parameters. 

Latent space disentanglement: techniques that seeks to learn a lower dimension representation 
(e.g., letter category, rotation, and color) of a high dimension space (e.g., images of letters) to 
support classification and generation in the lower dimension space. 

Multimodal learning: the process of learning knowledge from time-locked synchronized 
information from multiple sensors, such as audio, visual, and haptic input. 

Neural rendering: controlled rendering of 3D realistic imagery using deep learning models. In 
contrast to traditional rendering pipelines, neural rendering pipelines are differentiable and can 
acquire 3D and physics knowledge from 2D training data. 

Simulators: software that is able to generate, often in real time, data and ground-truth annotation 
from metadata for deep learning models, such as three-dimensional imagery of a scene and 
segmentation masks.   
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Synthetic data: data used to train and test deep learning models that is created by artificial 
means, such as by rendering pipelines, GANs, and fusion models. 
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