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Abstract— Building successful collaboration between humans
and robots requires efficient, effective, and natural communi-
cation. Here we study a RGB-based deep learning approach
for controlling robots through gestures (e.g., “follow me”).
To address the challenge of collecting high-quality annotated
data from human subjects, synthetic data is considered for
this domain. We contribute a dataset of gestures that includes
real videos with human subjects and synthetic videos from our
custom simulator. A solution is presented for gesture recogni-
tion based on the state-of-the-art I3D model. Comprehensive
testing was conducted to optimize the parameters for this
model. Finally, to gather insight on the value of synthetic
data, several experiments are described that systematically
study the properties of synthetic data (e.g., gesture variations,
character variety, generalization to new gestures). We discuss
practical implications for the design of effective human-robot
collaboration and the usefulness of synthetic data for deep
learning.

I. INTRODUCTION

Robust perception of humans and their activities will be
required for robots to effectively and efficiently team with
humans in vast, outdoor, dynamic, and potentially dangerous
environments. This kind of human-robot teaming is likely
to be relevant across different domains, including space
exploration [1], peacekeeping missions [2], and industry [3].
The cognitive demand imposed on humans by the sheer
complexity of these environments requires multiple, effec-
tive, and natural means of communication with their robotic
teammates. Here we focus on one visual communication
modality: gestures [4]. Gestures complement other forms
of communication - e.g., natural language - and may be
necessary when (1) it is desirable to communicate while
maintaining a low profile, (2) other forms of digital commu-
nication are not available, or (3) distance prevents alternative
forms of communication. Since humans are likely to carry a
heavy load and need to react quickly to emerging situations,
it is important that gesture communication be untethered;
thus, an approach based on data gloves is excluded [5]. The
operational environment, moreover, is likely to be outdoors,
thus, excluding the viability of depth sensors - such as
the Kinect - which are known to have limitations in these
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settings. Therefore, in contrast to other work in gesture
recognition [6] [7], we pursue a pure vision-based RGB
solution to this challenge.

A. Activity & Gestures Recognition

Recognizing human activity is an important problem
in computer vision that has been studied for over two
decades [8], which traditionally involves predicting an ac-
tivity class among a large set of common human activities
(e.g., sports actions, daily activities). In contrast, here we are
concerned with recognition of a limited set of gestures with a
clear symbolic meaning (e.g., “follow me”). Recognizing and
understanding gestures requires models that can represent the
appearance and motion dynamics of the gestures. This can be
accomplished by using (shallow) models that rely on hand-
crafted features that capture detailed gesture knowledge, or
more general deep models that are data-driven and less
reliant on hand-crafted features [9]. Effectively, deep learning
has been gaining increasing popularity in the domain of ac-
tivity recognition [10] [11] [12] [13] [14] [15] [8] [16] [17].
This has been facilitated by the development of better
learning algorithms and the exponential growth in available
computational power (e.g., powerful GPUs). In this paper, we
follow an approach based on a state-of-the-art deep learning
model [18].

B. The Data Problem

Deep learning models, however, tend to have low sample
efficiency and, thus, their success is contingent on the avail-
ability of large amounts of labeled training data. Collecting
and annotating a large number of performances from human
subjects is costly, time-consuming, error-prone, and comes
with potential ethical issues. These problems are only likely
to get exacerbated as society increases scrutiny on current
data handling practices [19]. For these reasons, researchers
have pointed that, rather than being limited by algorithm or
computational power, in certain cases, the main bottleneck
is the availability of labeled data [20]. To help mitigate this
problem, several datasets are available for human activity
recognition (for a full review see: [21] [8]) from diverse
sources including movies [22], sporting events [23], or daily
life [24]. However, a general problem is that they capture a
very broad range of activities that is readily available on the
web, or collected in heavily controlled environments. They
are, therefore, unlikely to suffice for domains that target
more specific types of activity and that favor models that
are optimized for this subset of human activity, rather than
general human activity. This is the case for our target domain



and, thus, new data must still be collected and annotated. To
minimize the cost and problems associated with collecting
labeled data from humans, we consider synthetic data.

C. Synthetic Data

Synthetic data may be critical to sustain the deep learning
revolution. Synthetic data is less expensive, already comes
with error-free ground truth annotation, and avoids many eth-
ical issues [25]. Synthetic data, generated from simulations in
virtual worlds, has been used in several important computer
vision problems. In object and scene segmentation, synthetic
data has been used to improve performance in object de-
tection [26] [27] [28], object tracking [29] [30], viewpoint
estimation [31], and scene understanding [29] [32] [33] [34].
In robot control domains, because of the difficulty and
danger of training robots in real environments, synthetic data
has often been used to teach robots visual space recogni-
tion [35] [36], navigation [37], object detection [38], and
grasping control [39] [40] [41]. Synthetic virtual characters
have also been used to train depth-based models for static
pose estimation [42] [43] [44] [45], gaze estimation [46],
and optical flow estimation [47]. Comparatively less work
has looked at synthetic videos to recognize human activity,
with Ionescu et al. [43] and de Souza et al. [10] being rare
exceptions. Their work, though, focused on general activity
recognition, rather than recognition of a specific set of
gestures as we do here. Much of this research reports a per-
formance bump due to augmenting real data with synthetic
data (e.g., [10] [29] [44]) or competitive performance while
training only on synthetic data (e.g., [31] [27]). Here we
study whether synthetic data can also improve performance
in our target domain with a focus on understanding how to
optimize the value of synthetic data.

D. Approach & Contributions

We present a new synthetic dataset for a small set of
control gestures (e.g., “follow me”) generated from a custom
simulator developed for our target domain. We also collected
a small, by design, dataset of (real) data with human subjects.
Since the focus of our study is on the value of synthetic data,
rather than focus on model development, we simply use the
state-of-the-art I3D model for activity recognition [18]. We
present several experiments to optimize the parameters for
this model when applying it to our domain, including number
of training steps, real-to-synthetic data ratio, input resolution,
input frames-per-second, and whether to use optical flow.
Our results when training and testing exclusively on real
data confirm that this is not an easy problem with an
overall accuracy of only 52%. However, when augmenting
the training data with synthetic data, our experiments show
a 20% bump in performance.

To understand what was driving the contribution of syn-
thetic data, we present ablation experiments where we held
each parameter (skin color, background, gesture animations,
etc.) of the synthetic data constant while varying the others;
our results indicate a degradation varying from around 5%
to 10%, thus suggesting that some parameters are more

TABLE I
PARAMETERS USED TO GENERATE THE SYNTHETIC DATA.

Parameter Range

Characters Male civilian, male camouflage, female civilian, fe-
male camouflage

Skin color Caucasian, African-American, East Indian
Thickness Thin, thick
Animations 3 animations per gesture
Repetitions Based on the distribution in the human data: Move

in reverse, 2-4; halt, 1; attention, 1-3; advance, 1;
follow me, 2-4; rally, 2-4; move forward, 2-4

Speeds 0.75×, 1.0×, 1.25×
Environments Alpine, barren desert, coastal, rolling hills
Camera
angles

0◦, 45◦, 90◦, 135◦, 180◦, 225◦. 270◦, 315◦

important than others. We test the performance of different
synthetic data input resolution - namely, frame resolution,
quality of rendering, and frames-per-second - on perfor-
mance. Finally, we present a set of experiments testing
whether the model is able to generalize to new gestures,
when training exclusively on synthetic data (for that gesture);
the results show robust performance for new gestures.

In sum, this paper makes the following contributions:
• A novel dataset of synthetic (and real) videos of control

gestures that can be used as a benchmark for studying
how models can be improved with synthetic data;

• A solution based on the I3D model for recognition of
control gestures in human-robot teaming;

• Insight on the value of synthetic data for deep learning
models.

II. THE DATA

For effective human-robot interaction, the gestures need
to have clear meaning, be easy to interpret, and have in-
tuitive shape and motion profiles. To accomplish this, we
selected standard gestures from the US Army Field Manual
[48], which describes efficient, effective, and tried-and-tested
gestures that are appropriate for various types of operating
environments. Specifically, we consider seven gestures (see
Fig. 1A): Move in reverse, instructs the robot to move back
in the opposite direction; Halt, stops the robot; Attention,
instructs the robot to halt its current operation and pay
attention to the human; Advance, instructs the robot to move
towards its target position in the context of the ongoing
mission; Follow me, instructs the robot to follow the human;
and, Move forward, instructs the robot to move forward.

The human dataset consists of recordings for 14 subjects (4
females, 10 males). Subjects performed each gesture twice,
once for each of eight camera orientations (0◦, 45◦, ..., 315◦).
Some gestures can only be performed with one repetition
(halt, advance), whereas others can have multiple repetitions
(e.g., move in reverse); in the latter case, we instructed
subjects to perform the gestures with as many repetitions as
it felt natural to them. The videos were recorded in open
environments over four different sessions. The procedure
for the data collection was approved by the US Army



Fig. 1. The gestures dataset: A, Reference gestures from the US Army
Field Manual [48]; B, Real data examples; C, Synthetic data examples.

Research Laboratory IRB, and the subjects gave informed
consent to share the data with the scientific community. The
average length of each gesture performance varied from 2
to 5 seconds and 1,574 video segments of gestures were
collected (see Fig. 1B for some examples). The video frames
were manually annotated using custom tools we developed.
The frames before and after the gesture performance were
labelled ’Idle’. Notice that since the duration of the actual
gesture - i.e., non-idle motion - varied per subject and gesture
type, the dataset includes comparable, but not equal, number
of frames for each gesture.

To synthesize the gestures, we built a virtual human
simulator using a commercial game engine, namely Unity.
The 3D models for the character bodies were retrieved from
Mixamo1, the 3D models for the face were generated on
FaceGen2, and the characters were assembled using 3ds

1https://www.mixamo.com
2https://facegen.com

Max3. The character bodies were already rigged and ready
for animation. We created four characters representative of
the domains we were interested in: male in civilian and
camouflage uniforms, and female in civilian and camou-
flage uniforms. Each character can be changed to reflect a
Caucasian, African-American, and East Indian skin color.
The simulator also supports two different body shapes: thin
and thick. The seven gestures were animated using standard
skeleton-animation techniques. Three animations, using the
human data as reference, were created for each gesture.
The simulator supports performance of the gestures with an
arbitrary number of repetitions and at arbitrary speeds. The
characters were also endowed with subtle random motion for
the body. The background environments were retrieved from
the Ultimate PBR Terrain Collection available at the Unity
Asset Store4. Finally, the simulator supports arbitrary camera
orientations and lighting conditions.

The synthetic dataset was generated by systematically
varying the aforementioned parameters as shown in Table I.
In total, 117,504 videos were synthesized. The average video
duration was between 3 to 5 seconds. To generate the dataset,
we ran several instances of Unity, across multiple machines,
over the course of two days. Fig. 1C shows examples of the
synthetic data. The labels for these videos were automatically
generated, without any need for manual annotation.

The full dataset, which we named Robot Control Gestures
(RoCoG) Dataset, will be shared in an online repository and
it will include all synthetic and real videos5. This dataset can
be used to research and evaluate different models for gesture
recognition, as well as the strengths and weaknesses of using
synthetic data in human activity recognition.

III. THE MODEL

Our model is based on the Inflated 3D convolutional
(I3D) network [18], which has recently achieved state-of-art
performance for activity classification. Since the focus of the
paper is on studying the contribution of synthetic data rather
than developing new models, using an existent state-of-the-
art model suffices for our purposes. This model utilizes
a pretrained image classification architecture by inflating
the 2D convolutional filter and pooling kernels into a 3D
(spatiotemporal) architecture. The Inception-v1 [49] model
is used as the front-end 2D classification architecture, and
pretrained sequentially on ImageNet and Kinetics6. Fig. 2
overviews the model architecture.

In this paper, we focused on the RGB stream rather than
the two stream RGB + Flow I3D model. Traditional two-
stream models for activity recognition leverage RGB as
well as optical flow, and are generally designed for activity
datasets recorded with a stationary camera. When the camera
is in motion, such as being hand-held or mounted on a

3https://www.autodesk.com/products/3ds-max
4https://assetstore.unity.com/packages/3d/environments/landscapes/ultimate-

pbr-terrain-collection-72767
5The repository will be available at: https://vision.ece.ucsb.edu
6The Kinetics dataset is available at: https://deepmind.com/research/open-

source/kinetics (last accessed on Aug-30, 2019)



Fig. 2. Model overview.

robot, the flow channel will be dominated by ego-motion
and is less informative to the activity [50]. While this can
be compensated for, for simplicity we choose to simply
remove this channel from the model. Moreover, adding the
optical flow stream is not critical for our study of the value
of synthetic data and would considerably slow down the
preprocessing times and training times (given that we would
have to split the available GPUs). Research also indicates
that single RGB-stream 3D convolution networks are fully
capable of learning motion patterns [18] [51]. Nevertheless,
we still present one experiment comparing the best version
of our RGB model with the two-stream model.

The resulting model consumes a 65-frame input video (i.e.
65×224×224), and outputs a N×8 classification correspond-
ing to 8 subsequences of 8 frames each. N is the number of
classes, which consists of the 7 gesture classes mentioned
above, and an idle class that consists of background and
transition motions between gestures. During training, we se-
lected random 65 frame subsequences from the source video.
The loss function was a conventional multiclass softmax
cross entropy loss on the gesture class, with equal weights
across all classes. The models were trained for up to 38k
steps (see the Experiments section). We used exponential
learning decay, with an initial learning rate set to 0.0001, a
decay factor of 0.8, and with decay happening every 6,000
steps. When synthetic and real data were used to train a
model, we weighted synthetic and real samples equally (see
the Experiments section). All the code was implemented in
Tensorflow. All models were trained on the same machine
with an Intel 6-core CPU, 64 GB of RAM, and two NVIDIA
RTX 2080 Ti GPUs.

IV. EXPERIMENTS

Here we present a carefully selected subset of the experi-
ments we conducted to achieve two goals: (1) optimize the
parameters of the model, and (2) optimize the value of the
synthetic data. In general, we tested against the same subset
of the real data. Specifically, we used 10 subjects (7 males, 3
females) for training, and the remaining 4 subjects (3 males,
1 female) for testing. Notice that no human subject was
used both for training and testing. To generate the train and
test sets, the frames were extracted from the corresponding
videos. In the rare occasions where there weren’t enough
frames for the 65-frame sliding window requirement, we
padded the videos using the last frame. Recall that, since

gesture performances can have different durations due to
gesture type or individual differences, even though the test
set contains an equal number of videos for each gesture class,
in practice, it only had an approximately equal number of
(non-idle) frames per gesture class.

Regarding synthetic data, we generated the training sets
by sampling 10,000 (out of 117,504) videos. Limiting the
synthetic sets to 10,000 videos considerably reduced the
amount of data preprocessing times, frame set sizes, and
training times, thus allowing us to run experiments more
efficiently. Nevertheless, we made sure that the samples were
balanced for gesture class (i.e., the sample had an equal
number of videos for each gesture type), character model,
and number of gesture animations per class. As before,
padding was added at the end of the video, if necessary.

A. Baseline Experiments

To establish baseline performance, we trained and tested
the model on real data, which revealed an accuracy of 51.5%
(Fig. 3-A). We, then, trained exclusively on synthetic data
and tested on the same real data test set, which showed
an accuracy of 40.8% (Fig. 3-B). Notice that this is better
than the accuracy for a model that makes random choices
(12.5%) and a model that always classifies as ‘Idle’ (36.2%).
The critical experiment, however, corresponds to training on
synthetic and real data and testing on the real data test set,
which led to an accuracy of 72.6% (Fig. 3-C) - i.e., a bump of
about 20% over the first model. For completeness, we ran an
experiment where training was done on real data and testing
on synthetic data only; this led to 48.6% accuracy (not shown
in the figure), suggesting that real data generalizes slightly
better to synthetic data than the other way around.

B. Model Experiments

We ran experiments to optimize the number of training
steps and the ratio of real to synthetic data. The performance
accuracy for increasing amounts of training steps was: 17,976
steps, 65%; 35,952 steps, 72.6%; 71,904 steps, 71.1%; and,
107,856 steps, 67.1%. Thus, we found that 30k to 40k was
a good range for the training steps. To study the impact
of real to synthetic ratio in the training data, we created
different training sets by repeating the number of real videos
according to the ratio (e.g., we repeated the real videos about
6× for the 1:1 ratio). The performance for different ratios
was: 1:1, 72.6%; 2:1, 60.4%; 3:1, 59.3%; and, 4:1, 50.8%.
Therefore, a 1:1 ratio led to the best performance. We also
wanted to test whether a dual-stream model, which includes
optical flow, would lead to a performance gain. The results
were: RGB Only, 72.6%; Optical Flow Only, 54.5%; and,
RGB + Optical Flow, 73.6%. Thus, optical flow did lead
to a minor improvement; however, as argued in Section III,
for efficiency, we conducted the remaining tests using the
RGB-only model as a reference.

C. Input Resolution Experiments

We ran three experiments to understand the impact of
synthetic data frame pixel resolution, rendering quality, and



Fig. 3. Gesture recognition accuracy and confusion matrices for the baseline experiments: (A) Trained and tested on human data; (B) Trained on synthetic
data, tested on human data; (C) Trained on human and synthetic data, tested on human data.

Fig. 4. Examples for the input pixel resolution (A) and Unity rendering
quality (B) experiments.

frames-per-second resolution. Regarding pixel resolution, we
compared the original 224 × 224 resolution to reduced
resolutions. This was done by downsampling the original
synthetic frames to the target resolution (e.g., 56 × 56) and
then upsampling them back to 224 × 224 (Fig.4-A). We then
trained the model on the modified synthetic data and tested
on the real data test set. The critical comparison was, thus,
with respect to the baseline model trained on synthetic data
and tested on real data (Fig. 3-B). The results were: 224 x
224 (reference), 40.8%; 56 x 56, 24.8%; 112 x 112, 43.8%;
and, 168 x 168, 37.1%. Thus, there was little to no degrada-
tion for 168 × 168 and 112 × 112 but, a significant reduction
in performance for 56 × 56. Secondly, we generated a low
resolution version of the synthetic data using the lowest
rendering quality for Unity (no shadows, reduced texture
quality, no anti-aliasing, etc.), and compared to the baseline
version of the synthetic data generated with the highest
rendering quality (Fig. 4-B). The results showed that the
low resolution version had lower performance (35.8%) when
compared to the baseline (40.8%). Finally, we manipulated
the frames-per-second (fps) resolution of the input video. The
original video was sampled at 30 fps and we compared to
the performance when the input video was at 15 fps and 10
fps. This was accomplished programmatically by adjusting
which frames were fed through the input queue in real-time
(e.g., for 15 fps, the code would just skip every other frame).
The test set’s fps was also adjusted accordingly. The results
were: 30 fps (reference), 40.8%; 15 fps, 36.7%; and, 10 fps,
30.1%. Therefore, reducing the fps led to an approximately
linear reduction in performance.

TABLE II
GESTURE RECOGNITION ACCURACY FOR THE ABLATION EXPERIMENTS.

Experiment Accuracy (%)

Synthetic on Human (reference ) 40.8
Female characters only 37.3
One character only (Male civilian) 29.7
Caucasian skin color only 26.2
0.75x speed only 28.0
Coastal terrain only 41.9
Thin character only 28.8
One gesture animation only 32.1

D. Ablation Experiments

To get insight on the relative contribution of each synthetic
data parameter, we ran experiments using ablated versions
of the synthetic dataset. The method consisted of keeping all
parameters unchanged except for the targeted parameter, the
range of which was constrained. We ran ablation tests for
single character, only female characters, single skin color,
single thickness level, only one animation per gesture class,
single speed, and always the same background. These ablated
datasets were then used to train models and tested on the
real data test set. The critical comparison was against the
model trained on synthetic data and tested on real data. The
results are shown in Table II. The experiments confirmed
a significant reduction in performance of about 10% for all
domain parameters, except for gender and terrain type which
did not lead to meaningful degradation in performance.

E. Generalization Experiments

Since we do not focus on general activity recognition, it
should be unsurprising that our dataset has a much smaller
number of target classes than some of the existing activity
recognition datasets - for instance, Chalearn [7] and Kinetics
have hundreds of target classes. However, as indicated by
the baseline experiments results, the current challenge is not
easy and there is still much room for future improvement.
An important question, though, is: Can we use synthetic data
to generalize to new gestures that are not in the original set?
This has practical importance as it speaks to generalization of



TABLE III
GESTURE RECOGNITION ACCURACY FOR GENERALIZATION

EXPERIMENTS. THE ’BASELINE ACCURACY’ CORRESPONDS TO

RECOGNITION RATE FOR TARGET GESTURES IN THE HUMAN +
SYNTHETIC BASELINE EXPERIMENT. THE ’GENERALIZATION

ACCURACY’ CORRESPONDS TO RECOGNITION FOR THE TARGET

GESTURE WHEN TRAINING THAT GESTURE ONLY ON SYNTHETIC DATA.

Gesture Baseline (%) Generalization (%)

Advance 74.81 79.39
Attention 33.33 12.40
Follow Me 48.92 62.90
Move Forward 73.42 43.04
Halt 86.31 73.21
Rally 72.73 57.95
Move in Reverse 62.57 69.83

the model. To test this, we ran experiments where we trained
the model on real and synthetic data for all gestures, except
one which was only trained on synthetic data. Presumably, in
practice, it is easier to synthesize data for a new gesture than
to collect real data for it. We ran seven experiments, one for
each gesture in our set. The critical comparison was to the
baseline per-gesture accuracy, when training on the real and
synthetic datasets. Table III shows the results. In some cases
the performance was lower (e.g., halt), whereas in others it
was higher (e.g., advance); however, overall, the majority
of the gestures had relatively high accuracy (> 55%), even
though training occurred only on synthetic data.

V. DISCUSSION

In this paper, we present insight, that may also inform
other domains, on how to optimize the generation and impact
of synthetic data for gesture recognition. First, our results
suggest that increasing photorealism leads to improved per-
formance. The experiment on frame pixel resolution shows
that performance held relatively well when the input res-
olution was moderately decreased (from 224 × 224 to
168 × 168 or 112 × 112), but was noticeably reduced
with considerable visual degradation (56 × 56). Another
experiment indicated that rendering the synthetic data with
low quality led to a clear reduction in performance. Second,
our results indicate that, at least in this domain, the motion
realism of the synthesized data is particularly important.
Effectively, when reducing the frames-per-second resolution
for the input video - thus, reducing its motion fidelity - the
performance showed proportional degradation. Future work
should further explore the relative value of photo and motion
realism for performance and compare the present dataset with
higher quality versions (e.g., motion-captured animation).

The results confirm that it is critical to synthesize data
that is fully representative of the target domain. Our results
revealed that most of the parameters in our simulator had
a measurable impact on the performance of the synthesized
data, including the number, skin color, and thickness of the
characters, and the speed and number of gesture animations.
On the other hand, as may have been expected, supporting

many background types had minimal impact on gesture
recognition performance. We note that, from a practical
point of view, this experimental approach of systematically
testing each domain parameter can be useful for optimizing
development efforts for the synthetic data simulator.

The present work used the I3D model as is, but future
work should consider domain adaptation or style transfer
techniques to improve performance. Domain adaptation tech-
niques encourage the model to learn domain-invariant rep-
resentations - in our case, that wouldn’t distinguish between
synthetic and real data - and they have shown to improve the
performance of models trained on simulated data [52] [39]
[53] [54] [46] [55] [56]. Style transfer techniques, on the
other hand, focus on changing the (pixels in the) data in one
domain (e.g., synthetic) to better match another domain (e.g.,
real) [57] [58] [59]. Furthermore, there has been promising
research in new activity recognition models including models
that account for optical flow while adjusting for camera ego
motion [60] [61], and models that use non-local operations
[62].

VI. CONCLUSION

Gesture communication is important for successful
human-robot collaboration in vast, dynamic, outdoor envi-
ronments. Here we share a dataset of real and synthetic
control gestures that is useful for training solutions for
this problem, propose a first solution based on the state-of-
the-art I3D model and, more importantly, demonstrate that
synthetic data can be crucial in overcoming the challenge
of collecting vast amounts of annotated human subject data.
As society increasingly scrutinizes the use of (real) data and
as technology makes it easier to develop custom simulators,
synthetic data is likely to play an increasingly pervasive role
in the deep learning revolution and experimentation, such as
presented here, becomes essential to optimize the value of
synthetic data.
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