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ABSTRACT

In this paper, we propose a novel approach for real-time human action recognition (HAR) on resource-constrained
UAVs. Our approach tackles the limited availability of labeled UAV video data (compared to ground-based
datasets) by incorporating synthetic data augmentation to improve the performance of a lightweight action
recognition model. This combined strategy offers a robust and efficient solution for UAV-based HAR. We evaluate
our method on the RoCoG v2' and UAV-Human? datasets, showing a notable increase in top-1 accuracy across
all scenarios on RoCoG: 9.1% improvement when training with synthetic data only, 6.9% with real data only,
and the highest improvement of 11.8% with a combined approach. Additionally, using an X3D backbone further
improves accuracy on the UAV-Human dataset by 5.5%. Our models deployed on a Qualcomm Robotics RB5
platform achieve real-time predictions at approximately 10 frames per second (fps) and demonstrate a superior
trade-off between performance and inference rate on both low-power edge devices and high-end desktops.
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1. INTRODUCTION

Unmanned Aerial Vehicles (UAVSs) equipped with high-resolution cameras offer a powerful tool for data collec-
tion in diverse environments.? Their ability to capture aerial video has revolutionized applications like human
detectionn,* tracking,” and action recognition®” in search and rescue, security, and traffic monitoring. By an-
alyzing video sequences, UAVs can provide valuable insights into human behavior, informing decision-making
processes.® Y

However, significant challenges exist between the potential of UAVs for human action recognition (HAR) and
real-world implementation. These challenges stem from the inherent differences between UAV-captured video
and traditional ground-based video:

1. Reduced Scale of Human Subjects: Due to high flying altitudes, humans appear smaller in UAV video
frames, often occupying less than 5% of the image (e.g., UAV-Human dataset?). This makes it difficult for
existing models to perceive human movement patterns.

2. Varied Viewing Angles: Unlike static ground cameras, UAVs offer oblique and overhead viewpoints.
Existing models trained on ground-level activity struggle to generalize to these unseen viewpoints.

3. Moving Camera Viewpoint: Continuous UAV movement introduces motion blur and viewpoint changes,
further complicating human behavior analysis. These factors, along with the need for image stabiliza-
tion,? 1% hinder current models’ ability to interpret human behavior.
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Figure 1. Overview of our method. Our method begins with an auto-zoom algorithm employing a lightweight detector
that efficiently extracts key information from video frames. To save computational cost, the detector focuses on infrequent
target presence and uses bounding box shifting for subsequent frames. Finally, all frames are cropped based on the
bounding boxes and rescaled to a uniform size before being fed into the core recognition model for action prediction.

While deep learning has transformed video action recognition, directly applying these methods to UAV videos
often leads to a significant drop in performance due to these challenges.!!>'? Furthermore, deploying compu-
tationally expensive models on resource-constrained UAV platforms is impractical. Existing mobile recognition
methods, while designed for lower power consumption, are primarily optimized for ground camera data and
underperform on aerial videos.!>'® Therefore, developing specialized techniques for the efficient execution on
UAV hardware is crucial for unlocking their full potential.

Another challenge is the difficulty and expense of acquiring and labeling high-quality UAV video data.
Ground-camera datasets like Kinetics-400'% boast hundreds of thousands of labeled videos, while the recently
introduced UAV-Human dataset,? specifically designed for aerial action recognition, contains only a fraction
of that size (approximately 22,000 videos). This limited data availability further hinders the development and
performance of deep learning models for aerial action recognition.

These unique challenges associated with UAV videos significantly impact the performance of existing human
action recognition models. Addressing this research gap is crucial to unlocking the full potential of UAVs for
HAR and realizing their broader applicability in real-world scenarios.

Main contribution In this paper, we present a real-time human action recognition algorithm specifically
designed for UAV videos, with a strong emphasis on enabling efficient execution on low-power or edge hardware
platforms. Our main contributions include:

1. We propose a novel autozoom algorithm that effectively extracts human-centric regions from UAV videos.
This algorithm combines autofocus, cropping, and scaling techniques to isolate key action information from
the human subject. This approach significantly reduces background noise, facilitating the extraction of
more discriminative features for robust human behavior analysis.

2. We introduce a strategy for improving the performance of a lightweight action recognition model through
synthetic data augmentation. This approach addresses the challenge of limited training data often encoun-
tered in UAV action recognition tasks.



2. RELATED WORK
2.1 Aerial Action Recognition

Despite deep learning’s success in recognizing actions from ground-based videos, replicating this feat with Un-
manned Aerial Vehicle (UAV) footage presents significant challenges. UAV video analysis contends with camera
movement, varying viewpoints, small and scattered objects, and illumination fluctuations.!”

Researchers have devised various methods to tackle these hurdles. One approach utilizes established 2D
Convolutional Neural Networks (CNNs) like ResNet!'® or MobileNet!? to analyze individual frames within the
video. The results are then combined for a final classification.2’2? Another approach leverages dual-stream
CNNs, which process both motion and appearance data simultaneously to enhance recognition capabilities.® 23

Moving beyond spatial analysis, 3D Convolutional Networks have emerged to capture both spatial and tem-
poral information. This allows for a more comprehensive understanding of human actions and their environment
within aerial videos, addressing the complexities of motion analysis.? 2124726 The latest advancements integrate
attention mechanisms with CNNs, specifically designed for resource-constrained devices used in drone applica-
tions (e.g., AZTR?7). Information theory has also been explored to separate crucial motion data from background
noise, alongside the use of keyframe selection techniques.?®2? Unlike most of the previous methods, our method
focuses on real-time human action recognition on low-power edge devices.

2.2 Synthetic Data

The scarcity and high cost of real-world data for robotics training have fueled a surge in interest in synthetic
data. Unlike real-world data collection, which can be cumbersome, expensive, and limited in its adaptability to
new environments, synthetic data offers a controlled and scalable solution.3"

Recent years have witnessed the development of numerous synthetic datasets specifically tailored to various
robotics applications.?"32 These datasets encompass diverse areas like image classification,?? segmentation,3*
and action recognition for both ground-based and aerial robots.?>36 Pioneering datasets like VisDA37 have
played a crucial role in advancing domain adaptation techniques, while specialized collections for tasks like
action recognition in aerial videos (e.g., NEC-DRONE dataset®®) have further propelled research efforts.

Beyond pre-built datasets, the emergence of advanced robotics simulators like CARLA,*® GTA 3" and NVIDIA
ISAAC/Omniverse? empowers researchers to create custom virtual environments for synthetic data generation.
These simulators offer a significant advantage by providing error-free environments, ensuring consistency and
reliability in the generated data. Additionally, they streamline the process of ground truth annotation, a critical
aspect of effective training. This ability to create tailored virtual environments, coupled with the benefits of
error-free data, makes these simulators invaluable tools for accelerating advancements in robotics training. By
embracing synthetic data and the capabilities of these advanced tools, researchers can overcome the limitations
associated with real-world data collection, paving the way for a new generation of more robust, adaptable, and
intelligent robots capable of operating effectively in diverse and dynamic environments.

3. METHODOLOGY
3.1 Overall Method

As shown in Figure 2, our method analyzes individual video frames. An initial stage employs an auto zoom
algorithm with a lightweight detector to efficiently locate potential targets (likely humans) in the frames. The auto
zoom algorithm utilizes sparse detection and bounding box shifting techniques to minimize processing demands.
The identified targets are then aligned within the frames for subsequent processing. The recognition model
is a Mobile Video Net (MoViNet)!* stream architecture employing 2D-+1 convolution net analyzes the aligned
frames, incorporating temporal information from previous frames to achieve real-time inference without sacrificing
accuracy, see Figure 3. This approach ensures efficient target identification and robust action recognition within
resource-constrained environments.
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Figure 2. Real and Synthetic UAV data from RoCoG."

3.2 Auto Zoom

We present a novel auto-zoom algorithm that significantly improves the efficacy of aerial video action recognition
models. Traditional approaches often struggle with the inherent challenge of small target objects in high-altitude
aerial footage. Our auto zoom algorithm tackles this issue by first automatically identifying and zooming in on
the target object, dynamically adjusting the zoom level to achieve a target pixel representation of 16-22% of
the frame compared to the typical 2-5% in raw footage. This magnified view provides richer details for feature
extraction, enabling the model to concentrate on the action itself rather than redundant background information.
By centering the target object within each frame, the zoom effectively mitigates the influence of UAV motion on
feature extraction. This leads to a more robust model with improved performance.

Specifically, the algorithm employs a lightweight human detector to generate the bounding boxes and operates
through a dynamic three-step process to optimize efficiency and accuracy without demanding extensive compu-
tational resources. Initially, it dynamically selects the size of the cropping region based on the target’s bounding
box, ensuring the target occupies an ideal 15% to 20% of the frame to balance detail and contextual information.
Subsequently, to further conserve computational resources, the algorithm performs detection only on key frames,
significantly reducing the processing load. The algorithm predicts the target’s position in upcoming frames using
a high-confidence threshold from previous detections to maintain focus and accuracy, especially in sequences
where UAV movement could potentially introduce noise or outliers. To address potential inaccuracies in initial
key frames, a confidence score filter (>0.8) is applied to eliminate unreliable bounding boxes. Subsequent bbox
locations are predicted using a pre-defined equation below based on previous key frames, ensuring smoother and
more accurate target tracking throughout the video.
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x; and y; are the coordinates of the bbox at key frame t. Dy, 8; represent the shifting distance and angle between
key frames t — 1 and ¢, respectively. dp, and diperq stand for deviations of the shifting distance and angle at
frame t.

After the auto zoom process, the algorithm utilizes the Euclidean distance metric to evaluate the difference
between the predicted bounding box (bbox) and the one produced by the detector. This step acts as a verification
layer for the detection outcomes, given that the efficacy of a lightweight detector may not be as reliable or on
par with that of larger detectors. If this distance is within a set threshold, it indicates a successful detection. On
the other hand, if the distance goes beyond this threshold, or if there’s no detection at all, the predicted bbox is
assigned to the current key frame.

By integrating these techniques, the auto zoom algorithm offers a robust solution for aerial video action
recognition. It overcomes the challenges posed by small target objects and UAV motion, while simultaneously
optimizing computational efficiency.

3.3 Synthetic Data Augmentation

As mentioned in Section.1, the challenge of acquiring and annotating high-quality UAV video data significantly
hampers the development of aerial action recognition models. Ground-camera datasets, such as Kinetics-400,'6
contain hundreds of thousands of labeled videos, whereas aerial-specific datasets like UAV-Human? have sub-
stantially fewer, with around 22,000 videos. This scarcity of labeled UAV video data restricts the training and
performance of deep learning models for aerial action recognition tasks.

To mitigate these limitations, synthetic data generated from game engines like Unity are utilized to augment
real-world datasets. This synthetic data,' crafted with high-quality 3D assets and animated using both skeleton-
based and motion capture techniques, adds nearly 107K videos to the dataset, significantly expanding the volume
of training data. However, direct inclusion of this synthetic data in training risks biasing the model towards
synthetic features, potentially degrading its real-world performance. Furthermore, the necessity to deploy these
models on low-power edge devices, where computational resources are limited, raises additional concerns over
model size and the risk of overfitting to the large-scale synthetic dataset.

To mitigate the challenges posed by the difference in the size of real-world and synthetic data, we implement
a balanced training strategy. Our model undergoes training with a mix of both real-world and synthetic data,
despite the synthetic dataset being significantly larger. To counteract potential biases towards synthetic features,
we adjust training batches to maintain a roughly 50/50 split between real and synthetic data. This is achieved
by oversampling the real data, ensuring that it is not overshadowed by the synthetic dataset within any given
training batch. This balanced approach enhances the model’s learning and generalization capabilities by drawing
on the comprehensive variety of the combined dataset, while also reducing the risk of overfitting and synthetic
data bias. Ultimately, this strategy is designed to achieve an optimal equilibrium, leveraging the extensive
synthetic data resources to enhance model performance while maintaining its relevance and effectiveness for
real-world UAV-based action recognition tasks.

4. RESULTS
4.1 Datasets

We evaluate our method on RoCoG-v2 dataset,’ which is an indispensable asset for action recognition research,
offering a rich collection of both real and synthetic videos. This dataset comprises 482 real videos alongside
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106,996 synthetic ones, spanning seven distinct action classes captured from both ground-level and aerial view-
points. These classes are based on seven control signals from the U.S. Army Field Manual, encompassing
commands such as ”follow me,” ”advance,” "halt,” "rally,” ”attention,” "move forward,” and "move in reverse.”
A particular challenge posed by RoCoG-v2 is the visual similarity between certain actions—for instance, "move
forward” versus "move in reverse.” This similarity presents a significant hurdle for action recognition algorithms,
testing their precision in distinguishing and categorizing these closely related actions accurately.

UAVHuman? is one of the largest UAV-based human behavior understanding datasets. This benchmark sets
a new standard for human behavior analysis with UAVs, offering 67,428 multi-modal video sequences covering
action recognition, 22,476 frames for pose estimation, 41,290 frames for person re-identification across 1,144
identities, and 22,263 frames dedicated to attribute recognition. UAVHuman was meticulously compiled over
three months, capturing a wide array of urban and rural environments during both day and night, ensuring a
rich diversity in subjects, backgrounds, lighting, weather conditions, occlusions, camera movements, and UAV
flying attitudes.

4.2 Implementation Details

Evaluation metrics: We evaluate our method and other state-of-the-art methods using Top-1 accuracy scores,
where the predictions are considered to be correct if the top 1 highest probability answers match the actual label.

Edge devices: We use a robotic platform (Qualcomm Robotics RB5) with Qualcomm Kryo 585 CPU and
Qualcomm Adreno 650, see Figure 4. The efficient models are trained using TensorFlow and deployed using
Robot Operating System 2 (ROS2) Galactic. We also test our method on Desktop with an RTX A5000 GPU.

Environmental setup: All models in this paper are trained using NVIDIA GeForce 2080Ti GPUs and NVIDIA
RTX A5000 GPUs. The initial learning rate is set at 0.1 for training from scratch and 0.05 for initializing with
Kinetics pre-trained weights. Adam is used as the optimizer with 0.0005 weight decay and 0.9 momentum.
We use cosine/poly annealing for learning rate decay and multi-class cross-entropy loss to constrain the final
predictions.

4.3 Results on RoCoG v2

Our evaluation on the RoCoG v2 dataset employed a fine-tuned MobileNet v2*” as the pivotal detector within
our autozoom algorithm, with Mobile Video Networks (MoViNets),'* specifically the MoViNet A0 model, serving
as the backbone. All the models are initialized with pre-trained Kinetics 400 weights. We tested the efficacy of
our method and compared it with others under three distinct training scenarios: exclusively on synthetic data,
solely on real data, and a combination of both, with all methods subsequently tested on real data. The results
underscore the effectiveness of our approach, revealing a significant enhancement in top-1 accuracy across all
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Method Data Frames Input Size GFLOPS Params Top-1

I3D'2 syn 16 256 x 256 216 12M 48.0
X3D!! syn 16 256 x 256 186 3.8M 34.5
Ours syn 16 172 x 172 5.51 3.1M 57.1
I3D'? real 16 256 x 256 216 12M 68.1
X3D! real 16 256 x 256 186 3.8M 70.3
MoViNet AQ™ real 16 172 x 172 2.71 3.1M 78.5
MoViNet A3 real 16 256 x 256 56.9 5.3M 79.8
Ours real 16 172 x 172 5.51 3.1M 86.7
I3D!2 real+syn 16 256 x 256 216 12M 60.4
X3D! real+syn 16 256 x 256 186 3.8M 63.0
MoViNet A0™  real+syn 16 172 x 172 2.71 3.1M 74.6
MoViNet A3 real+syn 16 256 x 256 56.9 5.3M 78.2
Ours real+syn 16 172 x 172 5.51 3.1M 90.0

Table 1. Results on RoCoG-v2. Our method shows a notable increase in top-1 accuracy in all three scenarios—9.1%
improvement with synthetic data, 6.9% with real data, and 11.8% with a mix of both.

Inference Time/frame(ms)

Method frames Input Size

RB5 Desktop
MoViNet A0 16 172 x 172 33.2 0.54
MoViNet A2 16 224 x 224  106.4 1.40
MoViNet A3™ 16 256 x 256 124.0 1.61
13D12 16 256 x 256 - 2.19
X3D!" 16 256 x 256 - 1.54
Ours 16 172 x 172 56.5 0.76

Table 2. Inference Efficiency on RB5 and Desktop. Our method achieves a better trade-off between model perfor-
mance and inference rate on low-power edge device and high-end desktop.

scenarios. Specifically, as shown in Table 1, our method shows a notable increase in top-1 accuracy in all three
scenarios—9.1% improvement with synthetic data, 6.9% with real data, and 11.8% with a mix of both. This
improvement is attributed to our innovative autozoom algorithm, which substantially minimizes background
noise and enhances the extraction of discriminative features for a more robust analysis of human behavior.

Moreover, our strategy of augmenting synthetic data further improves the accuracy. While training on a
mix of real and synthetic data, our method demonstrated a slight increase in top-1 accuracy(3.3%), contrary
to the observed accuracy declines in other methods, likely due to overfitting issues. This indicates not only the
effectiveness of the autozoom algorithm in isolating relevant action information but also the benefits of synthetic
data augmentation in enhancing the model’s comprehension of semantic and motion cues within human activity
areas, without succumbing to overfitting.

4.4 Inference Efficiency

In our comparative analysis, we assessed the inference time per video of our proposed methods against other
methodologies, utilizing two distinct hardware platforms: the Qualcomm Robotics RB5 platform as the edge
device and a high-end desktop equipped with an A5000 GPU in Table 2. For our approach, we incorporated
the MoViNet AO model as the backbone. The findings, detailed in our results, indicate a marked superiority in
the speed of inference of our method on both devices compared to previous approaches. It’s important to note
that due to compatibility issues, the inference times for I3D and X3D models were exclusively reported on the
desktop platform, as these models are not supported by the RB5 platform.

While our method demonstrates a slight increase in inference time on both devices when compared to the
baseline MoViNet AO model, this marginal delay is counterbalanced by a substantial improvement in accuracy, as
evidenced by the comparative accuracy results. This balance between inference speed and accuracy highlights the



Method Backbone Extra data Input Size Frames Views GFLOPs Params. Top-1 Acct

Slowfast*! ResNet50 K400 224 x 224 8 5x%x3 99 50M 36.3
13D'? ResNet101 K400 540 x 960 8 10x3 108 28M 21.1
FNet*? 13D K400 540 x 960 8 10x 3 108 28M 24.3
X3D!" - K400 540 x 960 8 10x 3 65 4M 36.6
FAR43 X3D K400 540 x 960 8 10x 3 65 4M 38.6

DiffFAR** X3D K400 540 x 960 8 10 x 3 130 4M 41.9

MViT v1%° MViT-B K400 224 x 224 16 5x1 71 3™ 24.3

ViViT FE*6 ViT-B IN-21K 224 x 224 16 1x1 284 116M 34.1
TimesFormer?” ViT-B K400 224 x 224 8 1x3 196 131M 38.4
Ours X3D K400 224 x 224 16 10x 3 7 4M 47.4

Table 3. Results on UAV-Human. Our method, when combined with the X3D backbone, demonstrates a significant
accuracy improvement of 5.5% on the UAV-Human dataset.

efficacy of our approach, illustrating its potential for real-time application on both edge and high-end computing
devices without compromising on performance.

4.5 Results on UAVHuman

Extending the versatility of our approach, we integrated our autozoom algorithm with another backbone model,
X3D,'"! and conducted evaluations on the UAV-Human dataset. The outcomes, as presented in our findings,
showing 5.5% accuracy improvement, further affirm the superiority of our proposed method. This successful
integration demonstrates that our autozoom algorithm can enhance action recognition accuracy across various
backbone models, proving its effectiveness on large-scale real datasets. This adaptability underscores the algo-
rithm’s potential to significantly improve performance in diverse action recognition tasks, showcasing its broad
applicability and the promising direction for future research in enhancing UAV-based human action recognition.

5. CONCLUSION

In conclusion, our research addresses the pivotal challenges in human action recognition (HAR) using Unmanned
Aerial Vehicles (UAVSs), overcoming obstacles such as the reduced scale of human figures in videos, varying
viewing angles, and the dynamic nature of UAV-captured footage. These issues, alongside the scarcity of labeled
UAV video data and computational constraints on UAV platforms, necessitate specialized solutions for effective
aerial action recognition.

Our contributions, including the novel autozoom algorithm and synthetic data augmentation, significantly
enhance the ability to isolate and analyze human actions in UAV videos. These advancements not only improve
recognition accuracy but also ensure computational efficiency, enabling real-time processing on edge devices. By
tackling the limitations of current models and data availability, our work broadens the potential applications of
UAVs in sectors like security, search and rescue, and traffic monitoring, marking a step forward in realizing the
full capabilities of UAVs for complex action recognition tasks in varied environments.
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