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Abstract
Active Learning (AL) aims to enhance the performance of
deep models by selecting the most informative samples for
annotation from a pool of unlabeled data. Despite impres-
sive performance in closed-set settings, most AL methods
fail in real-world scenarios where the unlabeled data contains
unknown categories. Recently, a few studies have attempted
to tackle the AL problem for the open-set setting. However,
these methods focus more on selecting known samples and
do not efficiently utilize unknown samples obtained during
AL rounds. In this work, we propose an Entropic Open-set
AL (EOAL) framework which leverages both known and
unknown distributions effectively to select informative sam-
ples during AL rounds. Specifically, our approach employs
two different entropy scores. One measures the uncertainty
of a sample with respect to the known-class distributions.
The other measures the uncertainty of the sample with re-
spect to the unknown-class distributions. By utilizing these
two entropy scores we effectively separate the known and un-
known samples from the unlabeled data resulting in better
sampling. Through extensive experiments, we show that the
proposed method outperforms existing state-of-the-art meth-
ods on CIFAR-10, CIFAR-100, and TinyImageNet datasets.
Code is available at https://github.com/bardisafa/EOAL.

Introduction
In recent years, deep learning methods have shown remark-
able performance in a large number of complex computer
vision tasks such as classification (He et al. 2016; Radford
et al. 2021), segmentation(Chen et al. 2017; Kirillov et al.
2023) and object detection (Ren et al. 2015; Redmon et al.
2016). However, the success of these deep learning models
in solving these complex tasks heavily relies on the avail-
ability of extensive labeled data (VS et al. 2023; Vs et al.
2022). Obtaining labeled data is generally labor-intensive,
and expensive (Wei, Iyer, and Bilmes 2015; VS, Oza, and
Patel 2023). Active Learning (AL) tackles this huge data
labeling issue by strategically selecting a subset of infor-
mative samples for annotation, rather than labeling the en-
tire data. Primarily, there are two types of AL techniques:
a) uncertainty-based methods, and b) diversity-based meth-
ods. Uncertainty-based techniques (Seung, Opper, and Som-
polinsky 1992) leverage model uncertainty on unlabeled
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Figure 1: Left: At the 5-th AL round, we plot the difference
between the average entropy scores of known and unknown
samples using a closed-set classifier and our method. Our
method utilizes two entropy scores which enhance the sep-
aration between known and unknown samples resulting in
a better sampling of the knowns. Right: Active sampling
precision graph for a closed-set classifier and our method.
Because of better separation between known and unknown
samples, our method tends to have better precision in sam-
pling known samples at each AL cycle. (CIFAR-10, 40%
mismatch ratio)

samples to select the most informative ones, while diversity-
based methods (Nguyen and Smeulders 2004) focus on en-
hancing model learning by carefully choosing samples that
show maximal diversity.

In general, AL methods produce promising results in
closed-set settings where the unlabeled data contains only
known classes. However, in real-world scenarios, this as-
sumption does not hold as the unlabeled data contains both
known and unknown samples. As a result, the performance
of these closed-set AL methods significantly declines (Ning
et al. 2022). One main reason for this phenomenon is that ex-
isting uncertainty- and diversity-based methods choose the
unknown samples as the most informative samples for hu-
man annotation, thereby wasting the annotation budget. Hu-
man annotators would disregard these unknown samples be-
cause they are unnecessary for the target task. Therefore, it
is important to address the problem of active learning under
an open-set scenario where unknown class samples might
appear in the unlabeled data during sampling.

A straightforward open-set AL approach is to train a
closed-set classifier and utilize entropy scores to separate
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known and unknown samples. Later, we annotate the low en-
tropy samples because the closed-set classifier produces low
entropy for known samples (see Fig. 1). However, acquir-
ing unknown samples together with know-class samples is
unavoidable, especially when their presence is extensive. To
address this challenge, LfOSA (Ning et al. 2022) proposes
to utilize unknown samples and train a classifier to reject the
unknown samples and focus more on selecting known sam-
ples. MQNet (Park et al. 2022) proposes a more agnostic
approach where the model leverages meta-learning to sep-
arate known and unknown samples. Despite their promis-
ing performance, these methods focus more on known-class
sampling and do not efficiently utilize unknown samples ob-
tained during AL rounds.

To this end, we propose a novel AL framework designed
to enhance the selection of informative samples from both
known and unknown categories during the training pro-
cess. Our approach aims to enhance the separation between
known and unknown samples effectively. We achieve this
by incorporating two distinct entropy scores into our frame-
work. The first entropy score is computed using outputs from
known classifiers. This score quantifies the uncertainty of
samples with respect to the distribution of known classes.
The second entropy score operates on a distance-based prin-
ciple. Specifically, the unknown samples obtained from AL
rounds are used to model the unknown distribution. Follow-
ing this, the second score quantifies the uncertainty of sam-
ples with respect to the data distribution of unknown classes.
Finally, utilizing the combined entropy score for all unla-
beled samples we perform active sampling. Furthermore, to
ensure diversity, we adaptively cluster and perform sampling
on each cluster according to the AL budget. Extensive ex-
periments show that our method outperforms existing state-
of-the-art methods on CIFAR-10, CIFAR-100 and TinyIma-
geNet datasets.

The contributions of this paper are as follows.

• We introduce an AL framework that leverages both
known and unknown distributions to select informative
samples during AL rounds.

• Specifically, we propose two entropy scores which sep-
arate the known and unknown samples for precise AL
sampling.

• Our experimental results show that the proposed method
outperforms existing state-of-the-art methods on CIFAR-
10, CIFAR-100, and TinyImageNet datasets.

Related Work
Active Learning (AL). Active learning aims at maximiz-
ing the performance improvement of a model by choosing
the most beneficial samples from a set of unlabeled data,
labeling them, and incorporating them into the supervised
training process. Uncertainty-based AL approaches attempt
to select the samples that the model is most uncertain about
via various uncertainty measures, such as entropy (Luo,
Schwing, and Urtasun 2013), mutual information (Kirsch,
Van Amersfoort, and Gal 2019) and confidence margin (Bal-
can, Broder, and Zhang 2007). On the other hand, diversity-
based approaches (Sener and Savarese 2017; Xu et al. 2003;

Nguyen and Smeulders 2004) cluster the unlabeled samples
and select representative samples from each cluster to better
model the underlying distribution of unlabeled data. Query-
by-Committee methods (Seung, Opper, and Sompolinsky
1992; Hino and Eguchi 2022) employ a measure of disagree-
ment between an ensemble of models as the sample selection
criterion. Recently, some methods have achieved enhanced
AL performance by combining multiple sample selection
criteria (Ash et al. 2019; Wei, Iyer, and Bilmes 2015; Par-
vaneh et al. 2022). For example, (Ash et al. 2019) a com-
bination of diversity and uncertainty is employed to achieve
improved performance, using the model’s gradient magni-
tude as a measure of uncertainty. However, while these stan-
dard AL methods excel in typical AL scenarios, they cannot
perform as effectively in the open-set setting with a class
distribution mismatch between labeled and unlabeled data.
Open-set Recognition (OSR). The problem of open-set
recognition was first formulated in (Scheirer et al. 2012)
and has gained significant traction in recent years. In (Ben-
dale and Boult 2016), the authors introduce a method called
OpenMax that trains a model with an extra class denoting
the probability that a sample belongs to an open-set class.
They utilize Extreme Value Theory (EVT) to calibrate the
network’s output for better OSR performance. (Ge et al.
2017; Neal et al. 2018; Moon et al. 2022) use Generative
Adversarial Networks (GANs) (Goodfellow et al. 2014) to
synthesize images that resemble open-set classes. These im-
ages are then used to model the open-set space. Another
line of work studies reconstruction-based approaches (Oza
and Patel 2019; Sun et al. 2020; Yoshihashi et al. 2019)
for open-set recognition. For example, C2AE (Oza and Pa-
tel 2019) trains class-conditioned auto-encoders and models
the reconstruction errors using EVT. During inference, the
minimum value of class-wise reconstruction errors is com-
pared with a predefined threshold to detect open-set sam-
ples. (Lu et al. 2022; Chen et al. 2020; Yang et al. 2020;
Shu et al. 2020) design different prototype-based learning
mechanisms for OSR. (Chen et al. 2020) proposes a strategy
called reciprocal point learning that learns reciprocal points
to represent otherness of each known class. It attempts to
push known samples far from reciprocal points and bound
the open space of known classes. (Safaei et al. 2023; Cheng,
Zhang, and Liu 2023) propose the use of one-versus-all clas-
sifiers to enhance OSR performance. In general, the OSR
task differs from the task of open-set AL in two critical as-
pects. First, in OSR, the entire set of known classes is la-
beled and accessible to the model during training, whereas
in open-set AL, only a few labeled samples are available
initially. Second, OSR algorithms lack access to the real un-
known data during training, while open-set AL approaches
must be specifically designed to fully utilize the knowledge
obtained from unknown samples gathered in later rounds of
AL. These differences highlight the importance of devising
approaches tailored to the challenges posed by open-set AL.
Open-set Active Learning. Recently, some approaches
have studied the AL problem in the presence of open-set
classes (Kothawade et al. 2021; Du et al. 2021; Park et al.
2022; Ning et al. 2022). MQNet (Park et al. 2022) addresses
the purity-informativeness trade-off in open-set AL by train-
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Figure 2: Overview of the proposed method for open-set active learning. At each AL cycle, we begin by training F , C, {Gi}Ki=1
via minimizing Eq. 9 on labeled data and active unknown data. Two distinct entropy scores are then computed to establish the
query strategy S as given in Eq. 8. Next, we cluster the unlabeled samples into K clusters and select the b

K samples with the
lowest S values for annotation, where b is the per-cycle annotation budget. Labeled and Active Unknown datasets are updated
based on the annotated samples, and the target model is trained using the updated labeled dataset.

ing an MLP that receives one open-set score and one AL
score as input and outputs a balanced meta-score for sample
selection. LfOSA (Ning et al. 2022) attempts to construct
a pure query set of known samples by modeling the max-
imum activation values of labeled data through class-wise
GMMs and rejecting samples with lower probabilities as un-
knowns. However, as previously mentioned, many of these
approaches do not fully utilize the availability of actual un-
known data queried in AL rounds.

Methodology
In this section, we first present the problem of open-set AL,
and then elaborate on the proposed approach in detail.
Problem Formulation. In open-set AL, we consider active
learning for a K-way classification problem in an open-set
setting, where K denotes the number of classes of interest
(known classes). In this setting, we are initially given a small
labeled datasetDL =

{(
xL
i , y

L
i

)}NL

i=1
of known samples that

belong to the label space K = {j}Kj=1, and a large pool of

unlabeled dataDU =
{
xU
i

}NU

i=1
(NL ≪ NU ) which contains

a mixture of known and unknown samples, where unknown
samples belong to the label space U , and K ∩ U = ∅ .

At each AL cycle, the query strategy selects a batch of b
samples Xactive from the unlabeled data, and their labels are
queried from an oracle. Xactive consists of known queried
samples Xk and unknown queried samples Xu. The samples
in Xu are labeled as the open-set class (class 0) by the oracle
and referred to as active unknowns in this paper. We add
Xu samples to the set of active unknowns DAU and update
the labeled dataset as DL = DL ∪ Xk. The updated DL is
utilized to enhance the performance of a target model T (·)
for an intended classification task.
Overview. Our AL framework utilizes two entropy scores

that effectively differentiate between known and unknown
samples, making them suitable for selecting the most valid
samples for annotation. First, the Closed-set Entropy is cal-
culated based on the outputs of K class-aware binary clas-
sifiers (BC) trained on DL. This entropy quantifies the un-
certainty of a sample with respect to the distributions of the
known classes, which tends to be low for known samples
and high for unknown samples. Second, the Distance-based
Entropy is utilized to prioritize the selection of samples that
stand apart from distributions of unknown classes. To com-
pute this entropy for a given sample, we start by clustering
the Convolutional Neural Network (CNN) based features of
DAU samples and determining the cluster centers. The dis-
tances between the sample and these cluster centers are then
used to measure the entropy of the samples. Fig. 2 provides
an overview of our approach.

Training for Closed-set Entropy Scoring
To quantify closed-set entropy score (Sc), we employ (1) a
CNN-based feature extractor F (·), (2) K class-aware binary
classifiers Gi(·), i ∈ {1, 2, ...,K}, and (3) a fully-connected
layer C(·) that produces a probability vector ∈ RK+1 for
(K + 1)-way classification on DL ∪ DAU . The parameters
of F and C are updated using a standard cross-entropy loss
(Lce) on DL ∪ DAU .
Training Binary Classifiers. We train each Gi with the
samples in the i-th known class as positives, and the re-
maining known samples as negatives. For a given image
x, let f = F (x) denote the extracted features of x, and
pi = σ (Gi (f)) denote the probability of x being categorized
as positive class by Gi, where σ is the Softmax operator. The
loss function for training Gi’s is as follows:

Lbce =
1

nl

∑
(xi,yi)∈DL

− log(pyi)−min
j ̸=yi

log(1− pj), (1)
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Algorithm 1: Our Proposed Algorithm for Open-set AL

1: Input:
2: Labeled data DL, unlabeled data DU , number of AL

cycles R, known categories K, per-cycle budget b,
models F , C, T , and {Gi}Ki=1

3: Process:
4: DAU ← ∅ # Initial active unknowns
5: Update models F , C, and {Gi}Ki=1 by minimizing

Ltotal in Eq. 9
6: for c = 0, 1, ..., R − 1 do
7: ∀x ∈ DU , Sd(x)← 0 # Initialization
8: if DAU ̸= ∅ do
9: Cluster the features of DAU into K clusters

10: For cluster i, compute the center ci using Eq. 5
11: ∀x ∈ DU , compute Sd(x) via Eq. 6
12: end if
13: ∀x ∈ DU , compute Sc(x) via Eq. 2
14: Cluster the features of DU into K clusters,

{C1, C2, ..., CK} # Diversity
15: for j = 1, 2, ...,K do
16: Sj ← {Sc(x)− Sd(x)|∀x ∈ Cj} # Uncertainty
17: Xj ← select the b

K samples with the lowest
values from Sj , and annotate them

18: end
19: # All queries for the current cycle:
20: Xactive ← X1 ∪X2 ∪ ... ∪XK

21: # Knowns and active unknowns:
22: Obtain Xk and Xu

23: DL ← DL ∪Xk, DAU ← DAU ∪Xu,
24: DU ← DU/X

active # Update datasets
25: Update the target model T via minimizing the

cross-entropy loss on DL

26: end

where nl is the number of known samples in the batch. This
loss is a modified version of binary cross-entropy (BCE)
(Saito and Saenko 2021) that only updates the positive and
the nearest negative decision boundaries for each sample.
This is to mitigate the bias of a BC towards the negative
class which includes lots of samples.
Closed-set Entropy. For a given sample x, we define closed-
set entropy score as follows:

Sc(x) =
1

K · log(2)

K∑
i=1

Hi(x), (2)

where Hi(x) denotes the entropy of Gi given as:

Hi(x) = −pi · log(pi)−
(
1− pi

)
· log(1− pi). (3)

Sc measures the average normalized entropy of BC’s.
High Sc on Unknown Samples. While training a BC via
Eq. (1) obviously ensures its low entropy for known sam-
ples, it does not necessarily guarantee a high entropy for all
unknown samples. To ensure high Sc for unknown samples,

we minimize the following objective on DAU :

Lem =
1

K · nau

∑
x∈DAU

K∑
i=1

−1

2
log(pi)− 1

2
log(1− pi),

(4)
where nau is the number of active unknown samples in
the batch. This loss encourages uniform probability outputs
p = [ 12 ,

1
2 ] for unknown samples.

Property 1. Minimizing Lem is equivalent to maximizing the
entropy of each Gi.
Proof. We have pi + (1 − pi) = 1, and pi ∈ (0, 1). By
applying Jensen’s inequality for concave functions, we ob-
tain Hi(x) ≤ log(2) and Lem ≥ log(2), where the equality
happens iff pi = (1− pi) = 1

2 .

Training for Distance-based Entropy Scoring
Sc alone is insufficient for open-set active sampling, as
it can be misled by unknown samples in close proximity
to a known category. Hence, we employ a distance-based
entropy score Sd to achieve higher precision in selecting
known samples. Typically, an unknown sample lies near the
distribution of its ground-truth category while being distant
from other categories, and hence it exhibits a low Sd. Con-
versely, a known sample remains distant from all unknown
categories, resulting in a high Sd.
Distance-based Entropy. We leverage DAU samples for
computing Sd. Having no access to their precise category
labels, we first cluster these samples using the FINCH clus-
tering algorithm (Sarfraz, Sharma, and Stiefelhagen 2019).
We fix the number of clusters to K. Denoting the obtained
cluster labels for DAU samples as {ŷi}NAU

i=1 , we then com-
pute the center of each cluster as follows:

ci =

∑
(x,ŷ)∈DAU

I{ŷ = i} · F (x)∑
(x,ŷ)∈DAU

I{ŷ = i}
, (5)

where I{·} is the indicator function, and NAU = |DAU |.
Finally, Sd is defined as:

Sd(x) =
−1

log(K)

K∑
i=1

qi(x) · log(qi(x)),

qi(x) =
e−∥F (x)−ci∥/T∑K
j=1 e

−∥F (x)−cj∥/T
,

(6)

where qi(x) is the probability of a sample x belonging to
the i-th cluster, and T is a temperature. Basically, we calcu-
late the distances of a sample from cluster centers, form the
probability vector [q1(x), q2(x), ..., qK(x)], and compute its
normalized entropy. We chose FINCH over K-means (Mac-
Queen et al. 1967) due to its superior speed and efficiency.
Low Sd on Unknown Samples. Using cross-entropy loss
for training F (·) generally ensures high distance of known
samples from ci’s in the feature space, resulting in high Sd

values. However, low Sd values for unknown samples can-
not be guaranteed since cross-entropy loss treats all active
unknowns as one open-set class. Hence, we further regular-
ize the features to impose more compactness within each
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cluster while maintaining a larger margin between different
clusters. Specifically, for a sample x ∈ DAU with cluster la-
bel ŷ, we utilize Tuplet loss (Sohn 2016; Miller et al. 2021)
to enforce a low distance between F (x) and the cluster cen-
ter cŷ , and a large margin between the distance to cŷ and the
distance to cj ̸=ŷ . The loss can be written as follows:

Lt =
1

nau

∑
x∈DAU

log
(
1 +

K∑
j ̸=ŷ

eDŷ−Dj

)
+ βDŷ, (7)

where Di = ∥F (x)− ci∥.

Query Strategy
As described in previous sections, we formulate our query
strategy by combining Eq. 2 and Eq. 6 as

S(x) = Sc(x)− Sd(x). (8)

S(x) score estimates the uncertainty of a sample with re-
spect to the data distributions of both known (Sc) and un-
known (Sd) categories. A known sample remains near its
corresponding known category (Sc ↓) and distinct from all
unknown categories (Sd ↑), while the opposite holds for an
unknown sample (Sd ↓ and Sc ↑). As a result, S(x) can ef-
fectively separate known samples from unknown ones.

Furthermore, to select informative samples, we propose to
query from different regions in the feature space to minimize
the redundancy of the selected samples. To be specific, our
query strategy is as follows. We first consider the unlabeled
samples which are classified as one of the known categories
by C(·) and cluster them into K clusters using the FINCH
algorithm. Then, within each cluster, we sort the samples
based on the S(x) score and select the first b

K samples with
the lowest scores for annotation, where b denotes the per-
cycle annotation budget (see Algorithm 1). The importance
of each component of our query strategy is further studied
in ablation studies.

Overall Loss
Our proposed method is trained in an end-to-end manner by
minimizing the following total objective:

Ltotal =

{
Lce + Lbce if DAU = ∅
Lce + Lbce + Lem + λLt if DAU ̸= ∅

, (9)

where we minimize Lbce on DL, Lem and Lt on DAU , and
Lce on DL ∪ DAU . Note we do not consider Lem and Lt in
the total objective before the first AL cycle since DAU = ∅.

Training the Target Model
After querying the samples at each AL cycle, a target model
is trained on the updated DL dataset, using the standard
cross-entropy loss. The performance of this model in K-way
classification is utilized for our evaluations.

Experiments
We perform extensive experiments on the CIFAR-10,
CIFAR-100 (Krizhevsky, Hinton et al. 2009), and TinyIm-
ageNet (Yao and Miller 2015) datasets to demonstrate the

effectiveness of our approach.
Datasets. The CIFAR-10 and CIFAR-100 datasets each con-
tain 50000 images for training and 10000 images for testing,
while they consist of 10 and 100 categories, respectively.
TinyImageNet is a large-scale dataset containing 100000
training images and 20000 testing images in 200 categories.
Experimental Setting. For each dataset, we consider some
randomly chosen classes to be the knowns and the remaining
classes to be the unknowns using a mismatch ratio. The mis-
match ratio is defined as |K|

|K|+|U| , where |K| is the number
of known classes and |U| is the number of unknown classes.
For CIFAR-10, CIFAR-100, and TinyImageNet, we initial-
ize the labeled dataset by randomly sampling 1%, 8%, and
8% of the samples from known classes, respectively. In all of
our experiments, we perform 10 cycles of active sampling,
and 1500 samples are queried for annotation in each cycle.
For fair experimental results, each experiment is conducted
four times with varying known/unknown class splits across
all the compared methods. The average results from these
runs are then reported.
Implementation Details. In all experiments, we train a
ResNet18 (He et al. 2016) as our backbone network and one-
layer fully-connected networks as binary classifiers. In each
AL cycle, we train models for 300 epochs via SGD opti-
mizer (Ruder 2016) with an initial learning rate of 0.01, a
momentum of 0.9, and a weight decay of 0.005. The learn-
ing rate is decayed by 0.5 every 60 epochs. The batch size is
set to 128 for all experiments. We generally set the values of
both β and λ to 0.1. We utilize PyTorch (Paszke et al. 2019)
to implement our method and an NVIDIA A5000 GPU to
run each experiment. We do not use any pre-trained model.
Baselines. We compare our method with the following AL
and open-set AL approaches, namely Random, Entropy
(Wang and Shang 2014), Certainty (Luo, Schwing, and Ur-
tasun 2013), BALD (Tran et al. 2019), Coreset (Sener and
Savarese 2017), BADGE (Ash et al. 2019), MQNet (Park
et al. 2022), and LfOSA (Ning et al. 2022), from which
LfOSA and MQNet are the SOTA methods for open-set AL.

Main Results
Classification Results. Fig. 3, 4, and 5 show the classifi-
cation results corresponding to various methods on CIFAR-
10, CIFAR-100, and TinyImageNet, respectively. It can be
seen that the proposed approach outperforms other base-
lines nearly across all datasets and mismatch ratios. Our
method can effectively identify known samples within un-
labeled data by utilizing the proposed entropy scores in the
query strategy. As a result, it shows excellent performance
in challenging scenarios with high unknown ratios. Specifi-
cally, our method outperforms recent open-set AL methods
MQNet and LfOSA by margins of 3.88% and 6.00%, re-
spectively, on CIFAR-100 with the mismatch ratio of 20%.
As the mismatch ratio increases, we observe a drop in the
performance gap between LfOSA and standard AL meth-
ods. This is because LfOSA mainly relies on the purity
of selected samples, which becomes less effective in high
mismatch ratios, where there is an abundance of unlabeled
known data. In contrast, our approach maintains a large per-
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Figure 3: Classification accuracy comparison on CIFAR-10 (mismatch ratios from left to right: 20%, 30%, and 40%).

Figure 4: Classification accuracy comparison on CIFAR-100 (mismatch ratios from left to right: 20%, 30%, and 40%).

Figure 5: Classification accuracy comparison on TinyImageNet (mismatch ratios from left to right: 20%, 30%, and 40%).

formance margin compared to the standard AL methods by
sampling from clusters of unlabeled data to ensure diversity.
Precision Results. The precision of different AL methods
in selecting known samples is shown in Fig. 6. As shown in
this figure, LfOSA maintains a high precision by focusing
on selecting as many known samples as possible which can
lead to sampling uninformative samples in low unknown ra-
tio scenarios. Conversely, the precision of MQNet declines
rapidly after the first few cycles which does not yield optimal
results when the unknown ratio is high due to prioritizing in-

formativeness over purity. However, our approach strikes a
balance between these two methods. It maintains high pre-
cision across AL cycles by employing two distinct entropy
scores and simultaneously selects diverse samples through
sampling from clusters. This shows the effectiveness of our
method in both high and low unknown ratio settings.

Ablation Study
In this section, we conduct the ablation study on CIFAR-100
with the mismatch ratio of 20% to show the effectiveness of
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Figure 6: Precision results on CIFAR-100 (mismatch ratios from left to right: 20%, 30%, and 40%).

Figure 7: Ablation study on CIFAR-100 with the mismatch ratio of 20%

each component within our framework. Fig. 7 (left) studies
the following cases:
Only Sc. It indicates using only the Sc in the query strategy.
Accordingly, we do not utilize Lt in this setting.
Only Sd. It uses only Sd in the query strategy. Accordingly,
we do not leverage Lem in this setting. It can be observed
that removing each entropy score leads to reduced accuracy
performance across all AL cycles. This shows the effective-
ness of combining these two entropy scores for the query
strategy in our framework.
w/oDAU . It denotes we do not utilizeDAU in any part of our
method training. We can observe the importance of training
with active unknown samples to achieve satisfactory open-
set AL performance.
w/o Target Model. It indicates the utilization of the trained
feature extractor F and the classifier C for the final eval-
uation on the testing data, as opposed to training a separate
target model onDL. The observed performance drop empha-
sizes the need for a separate target model for evaluations.

In Fig. 7 (middle), we evaluate the importance of diversity
in our proposed query strategy as follows:
w/o Diversity. In this experiment, clustering is not utilized
in the query strategy. Instead, we choose the samples with
the lowest S(x) scores from all unlabeled data globally,
rather than from each cluster. We see the performance of the
last AL cycle drops by 2.25% compared to our approach.
Only Diversity. In this experiment, we randomly select
samples from each cluster, rather than sorting them by the

S(x) score. The performance decreases by 11.33% indicat-
ing that diversity sampling alone is not effective for selecting
informative and valid samples.

In Fig. 7 (right) we study the role of binary classifiers
{Gi}Ki=1 in our framework:
w/o BC. In this experiment, we remove the BC block from
our framework. Not using {Gi}Ki=1 to form the Sc score, we
utilize the first K logit outputs of C to calculate the closed-
set entropy. The accuracy declines by a margin of 3.21% in
this setting which shows the effectiveness of utilizing BC’s
in our framework.

Conclusion

In this paper, we propose a novel framework for addressing
the problem of open-set active learning where we leverage
both known and unknown class distribution. Specifically,
our approach includes a closed-set entropy score that quanti-
fies the uncertainty of a sample with respect to distributions
of known categories and a distance-based entropy that mea-
sures uncertainty regarding distributions of unknown cate-
gories. By utilizing these entropy scores, we effectively sep-
arate the known and unknown samples, and followed by
clustering, we select the most informative samples. We con-
ducted extensive experiments on CIFAR-10, CIFAR-100,
and TinyImageNet, showing our proposed approach’s effec-
tiveness in both high and low open-set noise ratio scenarios.
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