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ABSTRACT

In this work, we explore the possibility of using synthetically generated data for video-based gesture recognition
with large pre-trained models. We consider whether these models have sufficiently robust and expressive rep-
resentation spaces to enable “training-free” classification. Specifically, we utilize various state-of-the-art video
encoders to extract features for use in k-nearest neighbors classification, where the training data points are
derived from synthetic videos only. We compare these results with another training-free approach— zero-shot
classification using text descriptions of each gesture. In our experiments with the RoCoG-v2 dataset, we find
that using synthetic training videos yields significantly lower classification accuracy on real test videos compared
to using a relatively small number of real training videos. We also observe that video backbones that were
fine-tuned on classification tasks serve as superior feature extractors, and that the choice of fine-tuning data has
a substantial impact on k-nearest neighbors performance. Lastly, we find that zero-shot text-based classification
performs poorly on the gesture recognition task, as gestures are not easily described through natural language.
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1. INTRODUCTION

One of the promises of synthetic data is the possibility of reducing reliance on real data for training deep learning
models, which can introduce practical challenges and ethical concerns. As such, there has been a growing interest
in using synthetically generated video data to train models for various video-related tasks. However, previous
work has shown the existence of a large domain gap between real and synthetic video data, resulting in sub-
optimal performance when naively applying a synthetically-trained model to data from the real domain.1–4

This issue has spurred the development of various approaches for video domain adaptation,3,5, 6 which can be
computationally expensive and difficult to implement in practice.

Here, we consider whether state-of-the-art video backbones, given the scale of their pre-training, are capable
of extracting domain-invariant representations to enable video classification without needing any real data for
the task. Specifically, we experiment with two different “training-free” approaches. The first uses modern video
backbones as feature extractors for K-nearest neighbors (KNN) classification, where the training samples are
derived from synthetic videos. In the second, we rely on text descriptions of the classes and attempt to perform
zero-shot classification using similarity between video features and text features from each class description. We
use video-based gesture recognition as our video classification task in this study.

2. EXPERIMENTS

We perform two sets of experiments. In the first set, we leverage large pre-trained video models as feature
extractors and perform KNN classification using these features. In the second, we perform zero-shot classification
using textual descriptions of gestures. These two methods are described in detail below. All experiments are
performed on ground viewpoint videos from the RoCoG-v2 dataset,1 examples of which are shown in Figure 1.



Figure 1: Examples of a real (left) and synthetic (right) video from RoCoG-v2. The datset consists of 7 gesture
categories.

2.1 KNN Classification

When using synthetic training videos to specify the gesture recognition task, we perform KNN classification on
features extracted from large pre-trained models. More specifically, the synthetic training data (44K videos) is
embedded in the feature space of a video encoder, and for a given real test video, the majority vote of the K
nearest training data points is used for classification, based on L2 distance. We also experiment with a scenario
where we have a small real dataset (203 videos) available for training. We set K=3 for all experiments. We
consider three different types of video encoders based on pre-training (and fine-tuning) strategies, as described
below. We choose a ViT-B/16 model for all experiments, and also study the effect of a larger ViT-L/16 model
for the best setting.

Self-Supervised Pre-Training. We consider Unmasked Teacher (UMT),7 which is a state-of-the-art video
self-supervised learning approach. This approach masks out most of the video tokens and enforces alignment
between the representations of unmasked patches and the corresponding ones from a teacher model (CLIP8). We
use the UMT model pre-trained on K710 videos (a union of K400,9 K60010 and K70011) for our experiments.
Eight frames are sampled from each video using the TSN12 frame-sampling strategy. The entire video is divided
into eight segments, and one frame is selected at random from each segment. The input frames to the network
are resized to 224 × 224 resolution.

Vision-Language Pre-Training. In contrast to UMT which uses only video data for pre-training, here we
consider a vision-language pre-training approach of ViCLIP.13 ViCLIP uses a video-language contrastive objective
similar to CLIP,8 while also masking videos for efficient pre-training. We use the model pre-trained on a filtered
version of the InternVid13 dataset that has 10M video-text pairs. Eight frames of 224 × 224 resolution are used
as input to the network.

Self-Supervised Pre-Training + Supervised Fine-Tuning. Here, we use self-supervised models which were
further fine-tuned for video classification in a supervised manner. We consider two pre-training methods, UMT7

and VideoMAE.14 VideoMAE is a powerful self-supervised pre-training approach which works by encoding
partially masked inputs and reconstructing the masked out regions. The VideoMAE models are pre-trained
on a larger (1.35M) UnlabeledHybrid15 dataset, whereas UMT models are pre-trained on the K710 dataset
(650K). These models are either fine-tuned on Kinetics9 (K710, K400, K600, K700) or the more motion-centric
Something-Something-v2 (SSv2)16 dataset. For the VideoMAE models, we sample sixteen frames from the input
video, with a tubelet size of two frames, resulting in the same number of tokens as using eight frames with a
tubelet size of one frame, as in the above scenarios.

2.2 Zero-Shot Text-Based Classification

The gesture recognition task can alternatively be specified by providing the textual descriptions of each activity.
In our second set of experiments, shown in Table 1, we use text descriptions to perform zero-shot classification
using pre-trained vision-language models. Specifically, we use the pre-trained ViCLIP13 text and video encoders,



Type Backbone
Pre-Training Pre-Training Fine-Tuning Real Test KNN Acc. (%)

Method Data Data Synthetic Train Real Train

Self-Supervised Pre-Training ViT-B/16 UMT K710 - 18.2 31.2

Vision-Language Pre-Training ViT-B/16 ViCLIP InternVid FLT-10M - 19.2 40.4

ViT-B/16 UMT K710 K710 42.4 49.5
ViT-B/16 UMT K710 K710 + K400 38.4 45.5

Self-Supervised Pre-Training ViT-B/16 UMT K710 K710 + K600 33.3 49.5
+ Supervised Fine-Tuning ViT-B/16 UMT K710 K710 + K700 35.4 51.5

ViT-B/16 VideoMAE UnlabeledHybrid K710 32.3 60.6
ViT-B/16 VideoMAE UnlabeledHybrid SSv2 43.4 68.7
ViT-L/16 VideoMAE UnlabeledHybrid SSv2 64.6 71.7

Table 1: K-nearest neighbor classification results on RoCoG-v2 ground videos using a variety of video backbones.

where classification is performed based on similarity between video features and text embeddings of descriptions
of all classes. We use two kinds of text descriptions of the gestures, original and transformed, as follows:

Original. These are the instructions associated with each gesture as they appear in the US Army Field Manual.17

These were provided to the performers of the gestures in the RoCoG-v2 dataset.

Transformed. We use GPT-3.5 to turn the original text instructions into gesture descriptions by prompting
the model with the following text: “Can you summarize the description below of an activity instruction and start
with “A person””.

Model Training Data Text Description Test Accuracy (%)

ViCLIP-B InternVid FLT-10M Original 25.3
ViCLIP-B InternVid FLT-10M Transformed 26.3

Table 2: Zero-shot classification on RoCoG-v2 ground videos using two forms of text descriptions.

3. DISCUSSION

Several observations can be made from the KNN classification results in Table 1. First, we can clearly see
that, in all cases, using synthetic training data results in lower accuracy on real videos than using real training
data. Despite the large quantity of synthetic training data (roughly 200× that of real training data), we find
it is not as effective at defining the gesture classes in the RoCoG-v2 dataset as real data. This is indicative
of the synthetic-to-real domain gap that has been observed previously, which is still far from solved. Figure 2
also illustrates this domain gap, as real video features appear noticeably more clustered by gesture class than
synthetic video features.

Next, we can see from comparing the first two rows in Table 1 that large-scale vision-language pre-training
seems to confer some benefit over smaller-scale masked pre-training, particularly when using real videos for KNN
classification. However, we find that backbones that have undergone supervised fine-tuning vastly outperform
both the self-supervised and vision-language pre-trained backbones. Interestingly, as the backbone is fine-tuned
on more real videos, we see a drop in KNN accuracy using synthetic training data while accuracy using real
training data increases. This suggests that video transformer backbones become less robust to the synthetic-to-
real domain shift the more they are trained on real videos.

We find that the choice of fine-tuning data has a substantial impact on KNN classification. We can see that
backbones fine-tuned on the SSv2 dataset16 perform much better than those trained on Kinetics videos. SSv2 is
a temporally-heavy dataset, where modeling of motion is critical for solving the classification task. In contrast,
the action categories in Kinetics videos exhibit a high degree of object and scene bias. Because the gesture
recognition task in RoCoG-v2 is also motion-focused, SSv2 serves as an effective source of fine-tuning data.
Notably, scaling up from the ViT-B model to ViT-L results in significant boosts in KNN accuracy, particularly
when using synthetic training data. Future experiments should investigate whether, in general, larger models
might be more robust to synthetic-to-real shifts.



(a) t-SNE plot for real data features. (b) t-SNE plot for synthetic data features.

Figure 2: t-SNE plots for real and synthetic data. Real data is more meaningfully clustered compared to synthetic
data, as the features are extracted using a ViT-B/16 model pre-trained on K710 and fine-tuned on K710 and
K400. For (a), we use all real data whereas for (b), we use 50 samples per class chosen at random from the
synthetic dataset.

Finally, we observe in Table 2 that zero-shot classification using ViCLIP13 performs poorly on the gesture
recognition task, regardless of the type of text description used. This is likely because the gesture recognition
task involves fine-grained motion differences that are not easily expressed through natural language.
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