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ABSTRACT
Automatic Target Recognition (ATR) is a category of computer vi-
sion algorithms which attempts to recognize targets on data obtained
from different sensors. ATR algorithms are extensively used in
real-world scenarios such as military and surveillance applications.
Existing ATR algorithms are developed for traditional closed-set
methods where training and testing have the same class distribution.
Thus, these algorithms have not been robust to unknown classes not
seen during the training phase, limiting their utility in real-world
applications. To this end, we propose an Open-set Automatic Tar-
get Recognition framework where we enable open-set recognition
capability for ATR algorithms. In addition, we introduce a plu-
gin Category-aware Binary Classifier (CBC) module to effectively
tackle unknown classes seen during inference. The proposed CBC
module can be easily integrated with any existing ATR algorithms
and can be trained in an end-to-end manner. Experimental results
show that the proposed approach outperforms many open-set meth-
ods on the DSIAC and CIFAR-10 datasets. To the best of our
knowledge, this is the first work to address the open-set classifi-
cation problem for ATR algorithms. Source code is available at:
https://github.com/bardisafa/Open-set-ATR.

Index Terms— Open-set Recognition, Automatic Target Recog-
nition, Deep Learning.

1. INTRODUCTION

Automatic Target Recognition (ATR) algorithms process informa-
tion acquired from multiple sensors (i.e. visible and infrared) to
recognize the targets appearing in the scene [1, 2, 3, 4]. These
ATR algorithms are capable of detecting targets at different scales
and ranges (Range:1000m - 5000m) [5], which are often not rec-
ognized by the naked eye. Further, these algorithms can effectively
remove the human intervention from the process of target acquisition
and recognition [6], making them a successful automatic recognition
system. Thus, ATR systems are extensively used in different com-
mercial and military applications [6]. An ATR algorithm consists
of two major components; detection and classification. The detec-
tion component generally involves a computationally simple region
proposal pipeline where target proposals are generated from motion
or by eliminating surrounding clutter [7]. The classification compo-
nent involves feature extraction and pattern recognition for classify-
ing target categories.

The rise in Deep Neural Networks (DNNs) [8] has drastically
improved the performance of computer vision tasks such as image
classification, image segmentation and object detection [8, 9, 10].
Further, the increase in computational resources and datasets have
enabled these deep networks to be deployable in real-world appli-
cations. Recently, there has been significant interest in improving
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Fig. 1. A) A closed-set classifier generates a multi-class decision
boundary to distinguish between known samples. Given unknown
samples, the closed-set classifier classifies them as known samples
with high confidence because the closed-set classifier is never trained
for unknown samples. Therefore, relying on a multi-class decision
boundary to detect unknown samples is not an optimal solution. B)
The proposed Category-aware Binary Classifier learns a category-
aware representation resulting in a compact category-aware decision
boundary. Hence, combining multi-class and category-ware decision
boundaries effectively classifies known and unknown samples.

ATR algorithms using DNNs [7, 5] where the DNN frameworks are
employed to improve detection and classification components of the
ATR algorithms [9, 11]. Unlike the traditional ATR methods, these
deep learning frameworks eliminate the need for problem-specific
discriminative features designed by humans. One of the major chal-
lenges in existing DNN frameworks is that they are based on the
closed-world assumption; the model assumes only the classes seen
during training will appear in the real-world. This assumption lim-
its the utility of existing DNN-based ATR systems in actual appli-
cations. Therefore, it is important to develop a DNN-based ATR
algorithm that detects unknown classes not seen during training.

Open-set recognition is a problem of handling ‘unknown’
classes that are not seen during training, whereas traditional closed-
set classifiers assume that only known classes appear during testing
[12, 13]. Existing open-set recognition methods are generally classi-
fied into generative and discriminative methods. G-OpenMax [14] is
a generative method which trains a model with synthesized unknown
data. However, these methods cannot be applied to natural images
other than hand-written characters due to the difficulty of generative
modelling. OpenMax [15] is a discriminative method which trains a
model with softmax cross-entropy classification loss for closed-set
samples and unknown classes are detected by applying a threshold
on predicted probabilities or logit scores [15]. Outlier (also called
anomaly or novelty) detection can be incorporated into the con-
cept of open-set classification as an unknown detector. Some of the
generic methods for outlier detection are one-class extensions of dis-
criminative models such as SVM [16] or forests [17] and subspace
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Fig. 2. Overview of our proposed approach for open-set automatic target recognition. Training: For a given batch of images, the encoder
network extracts features and the closed-set classifier classifies the features into targets. In addition, the extracted features are fed into a
category-aware binary classifier where each binary classifier learns the decision boundary to classify whether a given sample belongs to that
category or not. Testing: For a given image, the closed classifier predicts the nearest known class and its corresponding binary classifier score
is used to decide whether the given sample belongs to that category or not.

methods [18]. However, outlier detectors are not open-set classifiers
by themselves because they have no discriminative power within
known classes and it cannot be used to build a general purpose
open-set classifier. Therefore, extending discriminative open-set
recognition methods is a promising approach towards solving the
open-set ATR problem.

In this work, we employ ResNet 18 [11] as the base network for
ATR closed-set classification. Our experiments have shown that for
open-set classification, employing OpenMax [15] or SoftMax [19]
for classifying targets in short ranges (0m-1000m) works reasonably
well. However, the open-set classification performance drops as the
input data range increases (see in Table 2). This is due to the fact that
as the range increases the target size decreases and the network finds
it difficult even to learn discriminative known class features result-
ing in poor performance. To overcome this issue, we propose a novel
plugin Category-aware Binary Classifier (CBC) module which effec-
tively tackles the unknown categories seen during inference at vari-
ous ranges. In CBC, for each category, a binary classifier is trained
using the samples of the corresponding category as known samples.
The remaining samples from other categories are treated as unknown
samples. In this way, each binary classifier learns category-aware de-
cision boundaries, which decide whether a given sample belongs to
that category or not. In the testing phase, the closed-set classifier
identifies the nearest known class and the corresponding binary clas-
sifier’s score is leveraged to decide whether it is a known or unknown
sample. Hence, combining multi-class and category-ware decision
boundaries effectively classifies known and unknown samples at var-
ious ranges making it more suitable for ATR (see Fig. 1). This paper
makes the following contributions:
• To the best of our knowledge, this is the first work to consider an

open-set recognition problem for automatic target recognition.
• We propose a plugin Category-aware Binary Classifier (CBC)

module to effectively tackle unknown classes seen during infer-
ence at various ranges.

• We consider the DSIAC and CIFAR-10 benchmark datasets for
experimental analysis and show that the proposed method outper-
forms many open-set methods.

2. METHOD

Let us define the dataset as D = Dtrain ∪ Dtest. We split Dtrain

into knowns, Ktrain, and unknowns, Utrain. We only use Ktrain =

{(
Xi, yi

)}Ntrain

i=1
to develop our open-set recognition model where

yi ∈ {j}Nk
j=1, Ntrain is the size of training data, and Nk is the

number of known classes. We then test the model on Dtest =
Ktest ∪ Utest. Two distinct branches make up our training phase.
A closed-set classifier is trained in one branch, and category-aware
binary classifiers (CBC) for open-set identification are trained in the
other. We train the model in an end-to-end manner.

2.1. Closed-set training

For open-set ATR, we utilize a closed-set classifier with a feature
extractor (F ) and a fully connected layer (C) to classify known sam-
ples. We employ the Cross Entropy (CE) loss to train a closed-set
classifier on Ktrain and update the parameters of F and C. Given
an input image (X, y) ∈ Ktrain, the CE loss is defined as:

Lce(X, y) = −
Nk∑
i=1

Iy(i) log(piC), (1)

where Iy(i) is the indicator function of label y and piC = σ (C (Z))
is the predicted probability of X belonging to the i-th class. Here
Z = F (X) is the feature vector and σ is the softmax activation
function. Further, we perform entropy minimization on known sam-
ples to regularize the closed-set classifier for various ranges:

Lent(X, y) = −
Nk∑
i=1

piC log
(
piC

)
. (2)

2.2. Open-set training

To enable open-set recognition, we propose a category-aware binary
classifier where each binary classifier learns a decision boundary to
classify whether a given sample belongs to that category or not. To
train a binary classifier for a category, we typically consider all the
samples from that category to be positive and the rest as negative.
However, in practice, simply training binary classifiers with lots of
negative samples will skew the decision boundaries towards nega-
tive samples. To address this problem, we leverage the idea of hard
sample selection [21, 22] where for each sample, the positive and
the nearest negative-class boundaries are updated. We can decrease
the negative-class bias in binary classifiers by training them with the



Method
Range 1000 Range 2000 Range 3000 Combined

Visible Thermal Visible Thermal Visible Thermal Visible Thermal

ConfLabel [20] 72.05±6.9 74.29±3.9 70.69±6.3 72.88±10.0 69.27±9.5 71.39± 5.9 68.78±5.8 63.60±7.2

MLS [13] 95.71±4.3 94.59±1.0 90.83±2.2 93.50±5.4 87.68±5.1 83.73±10.2 91.74±2.4 88.81±1.7

SoftMax [19] 96.10±3.9 94.33±0.9 89.41±4.8 94.94±3.7 89.71±5.8 86.07±7.1 94.66±0.9 92.04±1.2

OpenMax [15] 94.74±3.9 93.85±0.6 90.04±4.1 93.41±4.1 91.57±7.7 87.00±6.2 93.92±1.8 90.80±1.2

Ours 98.61±1.3 96.27±1.1 93.28±1.7 96.17±1.7 92.03±7.3 87.52±8.6 94.89±1.4 92.93±2.3

Table 1. Open-set identification results corresponding to different approaches on the DSIAC dataset. The averaged AUROC(%) results are
reported after repeating each experiment for three times with randomly selected known/unknown class splits.

following loss, which works better than BCE (see Section 5):
Lcbc(X, y) = − log(pyO)−min

i 6=y
log(1− piO), (3)

where piO = σ (fi (Z)) is the probability of X being classified as
positive (known) by fi, and {fi}Nk

i=1 are category-aware binary clas-
sifiers. The total loss function for training the model is given as
follows:

Ltotal = Lce(X, y) + Lcbc(X, y) + λLent(X, y). (4)

2.3. Testing

For a given image Xtest, we first compute the feature map Ztest =
F (Xtest) and then classify it into one of the known classes, i.e.,
ŷtest = C(Ztest). Now we select the corresponding binary clas-
sifier in CBC as the open-set detector to see whether the category-
aware decision boundary detectsXtest as unknown or not. Thus, we
compare pŷtestO = σ (fŷtest (Ztest)) with a predefined threshold γ.
If pŷtestO < γ we categorize the input as an unknown sample and if
pŷtestO > γ we categorize the input as an known sample. Overview
of our proposed training and testing stages is shown in Fig. 2.

3. EXPERIMENTAL SETUP

3.1. Datasets

We conduct our experiments using two publicly available datasets:
DSIAC [23] and CIFAR-10 [24]. The DSIAC dataset provides
images in two domains, visible and thermal, which include eight
classes of civilian and military vehicles, namely ’Pickup’, ’Sport ve-
hicle’, ‘BTR70’, ‘BRDM2’, ‘BMP2’, ‘T72’, ‘ZSU23’, ‘2S3’. These
images were taken at five different ranges, from 1000 to 5000 meters
and at intervals of 1000 meters (see Fig. 3). To use the dataset, we
first crop the target in each image using the bounding-box informa-
tion provided in the dataset and then resize the target to the size of
224 × 224 while retaining the target ratio. Fig. 3 shows sample
images from this dataset. We use CIFAR-10, which is a commonly
used dataset for image classification tasks, to show that our method
can be generalized well to other benchmark datasets.

3.2. Implementation Details

In all experiments, we train the models for 20 epochs using the cross
entropy loss. The SGD optimizer [25] is used with the learning rate
of 0.001, the momentum of 0.9, and the weight decay of 0.0005. The
weight of entropy loss (λ) is set to 0.1. The threshold value γ is set
to 0.9 for the deployment of our method. We use a batch size of
64 for CIFAR-10 and 32 for DSIAC. We use ResNet 18 architecture
for the feature extractor and a fully connected layer for the binary

Method
Range 1000 Range 3000 Combined

Visible Thermal Visible Thermal Visible Thermal

ConfLabel [20] 61.2 61.7 57.3 57.5 59.4 55.2

MLS [13] 82.3 73.8 74.6 75.8 74.8 72.1

SoftMax [19] 85.3 82.8 79.7 77.7 81.1 78.1

OpenMax [15] 83.2 83.2 81.8 81.6 81.6 81.4

Ours 91.7 88.6 81.2 83.3 86.3 86.4

Table 2. Open-set classification results on the DSIAC dataset for
ranges 1000, 3000 and combined. We report accuracy (%) for a
6-class classification setting where we classify 5 ATR targets as 5
knowns and 3 ATR targets as 1 unknown.

classifiers. The implementation is in PyTorch [26], and we utilize an
NVIDIA TitanX GPU.

4. EXPERIMENTS AND RESULTS

We conduct various experiments to show the effectiveness of our
method for open-set identification and classification. Open-set iden-
tification measures the error of an open-set algorithm in identifying
and rejecting unknown samples during testing. Following the estab-
lished protocol for evaluating the open-set recognition performance
[19], we report area under ROC (AUROC) in the open-set identi-
fication experiments. AUROC is a calibration-free metric that de-
termines how good the open-set score is without being affected by
the chosen threshold. In open-set classification, the model classi-
fies a given sample into one of the known classes or the unknown
class which is anNk+1 - class classification problem and we report
accuracy in the open-set classification experiments. Open-set classi-
fication shows the ability of an open-set classifier to classify known
classes in addition to rejecting unknown samples. For fair compar-
ison, in all our experiments we randomly select some of the classes
to be knowns and the remaining classes to be unknowns. We use the
known classes of the training set for training the models, and both
known and unknown classes of the testing set for inference. For the
DSIAC dataset, 5 classes are randomly chosen as known classes and
3 as unknown classes. On CIFAR-10, the random class splits are 6
known classes and 4 unknown classes. We conduct the experiments
on a set of 3 different randomized class splits, and for each split, we
run experiments for three times.

We compare our approach with several existing open-set al-
gorithms, namely SoftMax [19], MLS [13], OpenMax [15], G-
OpenMax [14], and ConfLabel [20]. In SoftMax, the maximum
value of the softmax layer is used for open-set recognition while
MLS computes the open-set score from the penultimate layer’s log-
its. OpenMax trains a model with an additional unknown class and
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Fig. 3. Sample images for each class of the DSIAC dataset in thermal and visible domains.

CIFAR-10

MLS [13] 69.7

SoftMax [19] 67.7

G-OpenMax [14] 67.5

OpenMax [15] 69.5

Ours 73.6

Table 3. Quantitative results of different approaches on the CIFAR-
10 dataset. The averaged AUROC(%) results are reported.

uses meta-recognition and Extreme Value Theory (EVT) to calibrate
the output probabilities and estimate the probability of an input
belonging to the unknown class. G-OpenMax generates synthetic
unknown samples by Generative Adversarial Networks (GAN) [14]
to be used during the training. ConfLabel is a method based on the
gradients of samples where it leverages gradient-based features to
train an unknown detector.

The open-set identification results of different methods on the
DSIAC dataset are shown in Table 1. We perform the experiments
for images in both visible and thermal domains and for various
ranges. In the last two columns of the table, we report the per-
formance on the Combined dataset, which includes the collection
of images in all three ranges. Table 1 shows that our proposed
approach achieves higher AUROC scores and outperforms other
methods across various ranges and for both visible and thermal im-
ages. Particularly, in the visible/thermal domains of the Combined
dataset, we perform better than SoftMax and OpenMax methods by
a considerable margin. Moreover, our method obtains the lowest
standard deviation overall compared to all other methods making it
more robust and reliable. In Table 2, we report the open-set clas-
sification accuracy of our model on the DSIAC images in ranges
1000m, 3000m and the Combined dataset. As shown in Table 2, our
approach outperforms all other methods by a large margin in terms
of classification accuracy. Particularly, in visible/thermal domains of
the Combined dataset, we improve SoftMax and OpenMax methods
by 5.2/8.3% and 4.7/5.0%, respectively. To verify the generaliza-
tion ability of our method, we also conduct an experiment on the
CIFAR-10 benchmark dataset. From Table 3 we can infer that our
proposed method outperforms MLS and G-OpenMax methods by
3.9% and 6.1%, respectively showing the generalization capability
of our method.

5. ABLATION STUDY

Table 4 shows ablation study for our method on the Combined
dataset for both thermal and visible images. In row 1, we conduct
an experiment without the CBC loss and with the EM loss and in

CBC EM
AUROC

Visible Thermal

7 3 90.71 91.60

3 7 94.21 91.88

3 3 94.89 92.93

Table 4. Ablation study for our open-set recognition algorithm. The
impact of the CBC loss and ‘Entropy minimization’ (EM) on perfor-
mance has been studied. BCE is used when CBC loss is not.

row 2, we conduct an experiment with the CBC loss and without
the EM loss. From row 1 and 2, we can observe that the CBC
loss helps in learning a more compact representation for the known
category better than the EM loss. This shows the effectiveness of
the CBC loss over the EM loss. Finally, when we combine both
CBC and the EM loss, we get the improved performance of 94.89
and 92.93 for visible and thermal domain, respectively. The overall
performance improvement indicates that our CBC module benefits
the open-set identification ability of an ATR algorithm by learning
better category-aware representations.

6. CONCLUSION

In this work, we proposed an effective open-set recognition algo-
rithm for Automatic Target Recognition (ATR). Specifically, we in-
troduced a plugin Category-aware Binary Classifier (CBC) module
that is able to better identify unknown samples by learning compact
category-aware decision boundaries. Furthermore, the integration
of the proposed method with existing DNN-based ATR systems is
straightforward. Our approach outperforms various open-set recog-
nition techniques on different ATR settings, including visible and
thermal domains and at different ranges. We also demonstrated that
our method’s superiority is not restricted to the ATR situation and
can perform just as well with other benchmark datasets. In the fu-
ture, we will expand on this research work to include not only identi-
fying unknown samples but also being able to classify them as novel
classes and use them continuously to enhance the model’s perfor-
mance in closed-set and open-set scenarios.
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